Excel решение математических матриц

В программе Excel с матрицей можно работать как с диапазоном. То есть совокупностью смежных ячеек, занимающих прямоугольную область.

Адрес матрицы – левая верхняя и правая нижняя ячейка диапазона, указанные черед двоеточие.

Формулы массива

Построение матрицы средствами Excel в большинстве случаев требует использование формулы массива. Основное их отличие – результатом становится не одно значение, а массив данных (диапазон чисел).

Порядок применения формулы массива:

  1. Выделить диапазон, где должен появиться результат действия формулы.
  2. Ввести формулу (как и положено, со знака «=»).
  3. Нажать сочетание кнопок Ctrl + Shift + Ввод.

В строке формул отобразится формула массива в фигурных скобках.

Чтобы изменить или удалить формулу массива, нужно выделить весь диапазон и выполнить соответствующие действия. Для введения изменений применяется та же комбинация (Ctrl + Shift + Enter). Часть массива изменить невозможно.



Решение матриц в Excel

С матрицами в Excel выполняются такие операции, как: транспонирование, сложение, умножение на число / матрицу; нахождение обратной матрицы и ее определителя.

Транспонирование

Транспонировать матрицу – поменять строки и столбцы местами.

Сначала отметим пустой диапазон, куда будем транспонировать матрицу. В исходной матрице 4 строки – в диапазоне для транспонирования должно быть 4 столбца. 5 колонок – это пять строк в пустой области.

Матрича чисел.

  • 1 способ. Выделить исходную матрицу. Нажать «копировать». Выделить пустой диапазон. «Развернуть» клавишу «Вставить». Открыть меню «Специальной вставки». Отметить операцию «Транспонировать». Закрыть диалоговое окно нажатием кнопки ОК.
  • Транспонирование.

  • 2 способ. Выделить ячейку в левом верхнем углу пустого диапазона. Вызвать «Мастер функций». Функция ТРАНСП. Аргумент – диапазон с исходной матрицей.

ТРАНСП.

Нажимаем ОК. Пока функция выдает ошибку. Выделяем весь диапазон, куда нужно транспонировать матрицу. Нажимаем кнопку F2 (переходим в режим редактирования формулы). Нажимаем сочетание клавиш Ctrl + Shift + Enter.

Преимущество второго способа: при внесении изменений в исходную матрицу автоматически меняется транспонированная матрица.

Сложение

Складывать можно матрицы с одинаковым количеством элементов. Число строк и столбцов первого диапазона должно равняться числу строк и столбцов второго диапазона.

Сложение.

В первой ячейке результирующей матрицы нужно ввести формулу вида: = первый элемент первой матрицы + первый элемент второй: (=B2+H2). Нажать Enter и растянуть формулу на весь диапазон.

Пример.

Умножение матриц в Excel

Условие задачи:

Умножение.

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число. Формула в Excel: =A1*$E$3 (ссылка на ячейку с числом должна быть абсолютной).

Пример1.

Умножим матрицу на матрицу разных диапазонов. Найти произведение матриц можно только в том случае, если число столбцов первой матрицы равняется числу строк второй.

Разные диапазоны.

В результирующей матрице количество строк равняется числу строк первой матрицы, а количество колонок – числу столбцов второй.

Для удобства выделяем диапазон, куда будут помещены результаты умножения. Делаем активной первую ячейку результирующего поля. Вводим формулу: =МУМНОЖ(A9:C13;E9:H11). Вводим как формулу массива.

Пример2.

Обратная матрица в Excel

Ее имеет смысл находить, если мы имеем дело с квадратной матрицей (количество строк и столбцов одинаковое).

Размерность обратной матрицы соответствует размеру исходной. Функция Excel – МОБР.

Выделяем первую ячейку пока пустого диапазона для обратной матрицы. Вводим формулу «=МОБР(A1:D4)» как функцию массива. Единственный аргумент – диапазон с исходной матрицей. Мы получили обратную матрицу в Excel:

МОБР.

Нахождение определителя матрицы

Это одно единственное число, которое находится для квадратной матрицы. Используемая функция – МОПРЕД.

Ставим курсор в любой ячейке открытого листа. Вводим формулу: =МОПРЕД(A1:D4).

МОПРЕД.

Таким образом, мы произвели действия с матрицами с помощью встроенных возможностей Excel.

Решение системы уравнений в Microsoft Excel

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Варианты решений

Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

    Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.

Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.

Аргумент «Массив» — это, собственно, адрес исходной таблицы.

Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».

Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.

Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».

Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.

  • После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  • Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

      Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

    Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».

    Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».

    После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».

  • Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.
  • Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:

      Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».

    Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.

    Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

    Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».

    Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.

    Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.

    Аналогичным образом производим подсчет определителей для остальных трех таблиц.

    На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.

  • Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.
  • Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

      Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.

    Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    После этого копируем полученную строку и вставляем её в строчку ниже.

    Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».

    Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».

    В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

    Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

    Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

  • Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.
  • Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

    Помимо этой статьи, на сайте еще 12680 инструкций.
    Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в EXCEL

    history 12 ноября 2015 г.
      Группы статей

    • Системы линейных уравнений

    Решим Систему Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в MS EXCEL. В этой статье нет теории, объяснено только как выполнить расчеты, используя MS EXCEL.

    Решим систему из 3-х линейных алгебраических уравнений с помощью обратной матрицы (матричным методом).

    Запишем в ячейки основную матрицу системы и столбец свободных членов.

    Систему n линейных алгебраических уравнений с n неизвестными можно решать матричным методом только тогда, когда определитель основной матрицы системы отличен от нуля (в противном случае мы имеем линейно зависимые уравнения и соответственно решение систем не единственное). В нашем случае определитель =12.

    Для этого выделите ячейки A18:C20 , а в Строке формул введите =МОБР(A11:C13) , затем нажмите CTRL+SHIFT+ENTER .

    Решение системы уравнений получим умножением обратной матрицы и столбца свободных членов. Перемножить матрицы можно с помощью формулы массива =МУМНОЖ() .

    Для этого выделите ячейки F18:F20 , а в Строке формул введите =МУМНОЖ(A18:C20;F11:F13) , затем нажмите CTRL+SHIFT+ENTER .

    В файле примера также приведено решение системы 4-х и 5-и уравнений.

    Решение системы уравнений в excel

    Решение системы уравнений в Microsoft Excel

    ​Смотрите также​ Все элементы данной​Определитель системы больше 0​ результат подбора. Если​ Системы Линейных Алгебраических​B6:D8​Для этого выделите ячейки​ систему уравнений можно​ формулу массива. В​B​ подсчет определителя первичной​ том случае, если​x​=3*x^2+4*x-132​ обратной матрицы. Для​ мыши и выделяем​

    ​ порядку с учетом​Умение решать системы уравнений​

    Варианты решений

    ​ строки нужно разделить​ – решение можно​ нужно его сохранить,​ Уравнений (СЛАУ) методом​. Затем вставьте функцию​F18:F20​ решить целым рядом​ ней производится вычитание​

    Способ 1: матричный метод

    ​. Но на этот​ матрицы. Процедура происходит​ все определители будут​.​Вместо значения​ этого, как и​ область на листе,​ расположения каждого корня,​ часто может принести​ на коэффициент при​ найти по формуле​ вновь нажимаем ОК.​

    ​ обратной матрицы в​​MINVERSE​​, а в Строке формул введите =МУМНОЖ(A18:C20;F11:F13),​​ способов, каждый из​​ из третьей строки​​ раз сблизим обе​​ все по тому​
    ​ иметь значение, отличное​​Урок:​​«X»​​ в прошлый раз,​​ в которой находится​​ которому они соответствуют.​​ пользу не только​​ с. Введем в​​ Крамера (D​
    ​ В противном случае​​ MS EXCEL.​​(МОБР), как показано​​ затем нажмите ​​ которых имеет собственные​​ предыдущей группы данных​​ таблицы, так как​​ же алгоритму. Как​​ от нуля. Для​
    ​Подбор параметра в Excel​​подставляем адрес той​​ устанавливаем курсор в​​ матрица. Как видим,​​ Если в каком-то​​ в учебе, но​​ строку формулу массива:​​x​​ – «Отмена».​

      ​Запишем в ячейки основную​ ниже, и нажмите​CTRL+SHIFT+ENTER​ преимущества и недостатки.​ второй строки, умноженной​ это понадобится нам​ видим, определитель первичной​ расчета этого значения​Теперь попробуем решить систему​ ячейки, где расположено​ поле и с​ данные о координатах​ выражении один из​ и на практике.​ <=B12:E12/D12>.​/ |A|).​Для подбора параметра программа​ матрицу системы и​​Ctrl+Shift+Enter​​.​ Но все эти​​ на отношение второго​​ для работы в​

    ​ таблицы тоже отличный​ в Экселе опять​ уравнений методом Крамера.​ число​​ зажатой левой кнопкой​​ размещения автоматически заносятся​

    ​ корней отсутствует, то​ В то же​В строке 15: отнимем​Для расчета Х​ использует циклический процесс.​ столбец свободных членов. ​.​В файле примера также приведено решение​ методы можно условно​​ коэффициента третьей и​​ дальнейшем. Важным условием​ от нуля, а​

    ​ имеется отдельная функция​

    ​ Для примера возьмем​​0​​ мыши выделяем курсором​ в поле окна.​

    ​ в этом случае​ время, далеко не​ от второй строки​1​ Чтобы изменить число​Определитель основной матрицы вычислим​​=MINVERSE(B2:D4)​​ системы 4-х и​ разделить на две​

    ​ второй строки. В​​ является то, чтобы​​ значит, матрица считается​​ –​​ все ту же​, принятое нами за​​ соответствующую таблицу. Аналогичное​​ После того, как​ коэффициент считается равным​ каждый пользователь ПК​ третью, умноженную на​​: =U2/$U$1, где U2​​ итераций и погрешность,​

    ​ с помощью формулы =МОПРЕД(A11:C13)​​=МОБР(B2:D4)​​ 5-и уравнений.​ большие группы: матричные​ нашем случае формула​​ в первой ячейке​​ невырожденной, то есть,​МОПРЕД​ систему, которую использовали​x​ действие проводим для​ эта задача выполнена,​ нулю. Если коэффициент​ знает, что в​ коэффициент при с​ – D1. Для​ нужно зайти в​Определитель =12, это означает,​Примечание:​Этот пример покажет, как​ и с применением​ будет иметь следующий​ матрицы​ система уравнений имеет​​. Синтаксис данного оператора​​ в​.​ внесения координат в​ наиболее очевидным было​ не обозначен в​ Экселе существует собственные​​ второй строки (<=(B11:E11-B16:E16*D11)/C11>).​​ расчета Х​ параметры Excel. На​ что матрица А – невырожденная,​Строка формул показывает,​ решить систему линейных​​ инструмента подбора параметров.​​ вид:​A​​ решения.​​ следующий:​

    ​Способе 1​Переходим во вкладку​ поле​ бы нажать на​ уравнении, но соответствующий​ варианты решений линейных​

    ​ В строке 14:​2​ вкладке «Формулы» установить​​ то есть, ее​​ что ячейки содержат​ уравнений в Excel.​ В некоторых случаях​​=B13:E13-$B$12:$E$12*(C13/$C$12)​​значение было отличным​Теперь пора найти корни​=МОПРЕД(массив)​:​«Данные»​​«Массив2»​​ кнопку​ корень имеется, то​

    ​ уравнений. Давайте узнаем,​

    ​ от первой строки​: =U3/$U$1. И т.д.​ предельное количество итераций,​ определитель отличен от​​ формулу массива. Это​​ К примеру, у​​ не всегда матричные​​После ввода формулы выделяем​

    ​ от нуля. В​​ уравнения. Корень уравнения​​Таким образом, как и​​14​​. Жмем на кнопку​​, только на этот​​«OK»​ считается, что коэффициент​​ как с применением​​ отнимаем вторую и​

    ​ Получим корни уравнений:​​ относительную погрешность. Поставить​​ нуля. В этом​​ означает, что вы​​ нас есть следующая​ методы подходят для​ весь ряд и​ обратном случае следует​ будет равен отношению​ у функции​x1​«Анализ «что если»»​ раз выделяем значения​, но не стоит​ равен​ инструментария этого табличного​​ третью, умноженные на​​Для примера возьмем простейшую​ галочку «включить итеративные​ случае система линейных​​ не сможете удалить​​ система линейных уравнений:​ решения задачи. В​ применяем сочетание клавиш​ переставить строки местами.​​ определителя соответствующей преобразованной​​МОБР​​+2​​. Эта кнопка размещена​ колонки​​ торопиться. Дело в​​1​

  • ​ процессора выполнить данную​ соответствующие коэффициенты (<=(B10:E10-B15:E15*C10-B16:E16*D10)/B10>).​ систему уравнений:​​ вычисления».​​ алгебраических уравнений имеет​​ какой-то один из​​5x​​ частности тогда, когда​​Ctrl+Shift+Enter​​Копируем первую строку двух​​ матрицы на определитель​, единственным аргументом выступает​x2​ на ленте в​B​ том, что нажатие​. Обозначаем полученную таблицу,​ задачу различными способами.​ В последнем столбце​3а + 2в –​​ единственное решение, которое​ полученных результатов, только​+​ определитель матрицы равен​
  • ​.​​ соединенных матриц в​

    Способ 2: подбор параметров

    ​ первичной таблицы. Таким​ ссылка на обрабатываемую​+8​ блоке инструментов​. После того, как​ на эту кнопку​ как вектор​Скачать последнюю версию​ новой матрицы получаем​ 5с = -1​Дана система уравнений:​ может быть найдено​ все сразу. Чтобы​

      ​ нулю. В остальных​​Теперь следует выполнить обратную​​ строчку ниже (для​​ образом, разделив поочередно​​ таблицу.​x4​​«Работа с данными»​​ вышеуказанные действия проведены,​

    ​ является равнозначным применению​

    ​A​​ Excel​​ корни уравнения.​2а – в​Значения элементов введем в​​ методом Крамера.​​ удалить все результаты,​​+​​ же случаях пользователь​

    ​ прогонку по методу​​ наглядности можно пропустить​​ все четыре определителя​​Итак, выделяем ячейку, в​​=218​. Открывается выпадающий список.​ опять не спешим​​ команды​​.​Любое уравнение может считаться​Вычисления в книге должны​​ – 3с =​​ ячейки Excel в​

    ​Теперь последовательно будем заменять​ выделите диапазон​8z​ сам волен решать,​​ Гаусса. Пропускаем три​​ одну строку). В​ преобразованных матриц на​ которой будет выводиться​​7​​ Выбираем в нем​ жать на кнопку​​Enter​​Отдельно записываем значения после​​ решенным только тогда,​​ быть настроены следующим​​ 13​​ виде таблицы.​ столбцы матрицы А​B6:D8​​=​​ какой вариант он​ строки от последней​​ первую ячейку, которая​​ число​ определитель первой матрицы.​x1​​ позицию​​«OK»​

    ​. Но при работе​ знака «равно». Обозначаем​ когда будут отысканы​ образом:​а + 2в​Найдем обратную матрицу. Выделим​ на столбец свободных​​и нажмите клавишу​​46​

  • ​ считает более удобным​ записи. В четвертой​ расположена в строке​-148​ Затем жмем на​​-3​​«Подбор параметра…»​или клавишу​​ с массивами после​​ их общим наименованием,​​ его корни. В​​Делается это на вкладке​
  • ​ – с =​ диапазон, куда впоследствии​ членов и вычислять​Delete​​4x​​ для себя.​

    ​ строке вводим формулу​​ ещё ниже предыдущей,​

    Способ 3: метод Крамера

    ​, которое является определителем​ знакомую по предыдущим​x2​.​Enter​ завершения ввода формулы​​ как вектор​​ программе Excel существует​

    ​ «Формулы» в «Параметрах​​ 9​​ будут помещены элементы​​ соответствующие определители полученных​​.​​—​​Автор: Максим Тютюшев​
    ​ массива:​​ вводим следующую формулу:​​ первоначальной таблицы, мы​​ способам кнопку​​+5​​Запускается окно подбора параметров.​​, а набираем комбинацию​​ следует не кликать​​B​
    ​ несколько вариантов поиска​​ Excel». Найдем корень​​Коэффициенты запишем в матрицу​​ матрицы (ориентируемся на​​ матриц. Отношение определителей​​Используйте функцию​​2y​​Решим Систему Линейных Алгебраических​​=B17:E17/D17​
    ​=B8:E8-$B$7:$E$7*(B8/$B$7)​​ получим четыре корня.​​«Вставить функцию»​​x3​​ Как видим, оно​​ клавиш​​ по кнопке​​.​​ корней. Давайте рассмотрим​

      ​ уравнения х –​ А. Свободные члены​​ количество строк и​​ позволяет вычислить переменные​MMULT​​=​​ Уравнений (СЛАУ) методом​Таким образом, мы делим​​Если вы расположили матрицы​​ Как видим, они​

    ​.​+12​ состоит из трех​Ctrl+Shift+Enter​​Enter​​Теперь для нахождения корней​ каждый из них.​ х3 + 1​ – в матрицу​​ столбцов в исходной​​ х.​(МУМНОЖ), чтобы вернуть​12​ обратной матрицы в​ последнюю рассчитанную нами​

    ​ по-другому, то и​ равны значениям​Активируется окно​x4​ полей. В поле​.​, а произвести набор​ уравнения, прежде всего,​Самый распространенный способ решения​ = 0 (а​ В.​ матрице). Открываем список​В файле примера также​​ произведение матрицы​​6x​ MS EXCEL. В​

    ​ адреса ячеек формулы​5​​Мастера функций​​=213​«Установить в ячейке»​После данного действия в​

    ​ сочетания клавиш​ нам нужно отыскать​ системы линейных уравнений​ = 1, b​Для наглядности свободные члены​ функций (fx). В​​ приведено решение системы​​A-1​

    ​+​​ этой статье нет​​ же третий коэффициент.​​ у вас будут​​,​. Переходим в категорию​5​​указываем адрес ячейки,​​ предварительно выделенной ячейке​Ctrl+Shift+Enter​​ матрицу, обратную существующей.​​ инструментами Excel –​

    ​ = 2) методом​​ выделим заливкой. Если​​ категории «Математические» находим​ 4-х уравнений и​и​​7y​​ теории, объяснено только​ После того, как​ иметь другое значение,​14​«Математические»​x1​ в которой находится​ отобразятся корни уравнения:​​. Выполняем эту операцию.​​ К счастью, в​ это применение матричного​ итерации с применением​ в первой ячейке​ МОБР. Аргумент –​ прямая проверка решения.​B​​+​​ как выполнить расчеты,​

    ​ набрали формулу, выделяем​ но вы сможете​,​и среди списка​+​ формула​​X1​​Итак, после этого программа​ Эксель имеется специальный​ метода. Он заключается​

    ​ циклических ссылок. Формула:​ матрицы А оказался​ массив ячеек с​

    ​В программе Excel имеется​. Сперва выделите диапазон​4z​ используя MS EXCEL.​ всю строчку и​ высчитать их, сопоставив​8​ операторов выделяем там​x2​f(x)​,​ производит вычисления и​

  • ​ оператор, который предназначен​ в построении матрицы​Х​ 0, нужно поменять​ элементами исходной матрицы.​ обширный инструментарий для​G6:G8​=​Решим систему из 3-х​ жмем сочетание клавиш​​ с теми формулами​​и​ наименование​-2​, рассчитанная нами чуть​X2​​ на выходе в​​ для решения данной​​ из коэффициентов выражений,​​n+1​​ местами строки, чтобы​​Нажимаем ОК – в​​ решения различных видов​​. Затем вставьте функцию​50​ линейных алгебраических уравнений​Ctrl+Shift+Enter​ и изображениями, которые​​15​​«МОПРЕД»​x3​
  • Способ 4: метод Гаусса

    ​ ранее. В поле​,​ предварительно выделенной области​ задачи. Называется он​ а затем в​= X​

    ​ здесь оказалось отличное​​ левом верхнем углу​​ уравнений разными методами.​​MMULT​​В матричном представлении ее​​ с помощью обратной​​.​
    ​ приводятся здесь.​​. Таким образом, они​​. После этого жмем​​+4​​«Значение»​​X3​​ мы имеем матрицу,​
    ​МОБР​​ создании обратной матрицы.​​n​​ от 0 значение.​​ диапазона появляется значение.​​Рассмотрим на примерах некоторые​​(МУМНОЖ), которая показана​

      ​ можно записать в​ матрицы (матричным методом). ​​Поднимаемся на строку вверх​​После того, как формула​ в точности совпадают​​ на кнопку​​x4​​вводим число​​и​ обратную данной.​. Он имеет довольно​ Попробуем использовать данный​– F (X​Приведем все коэффициенты при​ Последовательно жмем кнопку​ варианты решений.​ ниже, и нажмите​​ виде​​СОВЕТ​ и вводим в​ введена, выделите весь​ с корнями, которые​

    ​«OK»​=83​«0»​X4​Теперь нам нужно будет​ простой синтаксис:​ метод для решения​n​ а к 0.​

    ​Инструмент «Подбор параметра» применяется​Ctrl+Shift+Enter​AX=B​: Решение СЛАУ методом​ неё следующую формулу​ ряд ячеек и​ мы нашли, используя​.​6​. В поле​

    ​. Они будут расположены​ умножить обратную матрицу​=МОБР(массив)​ следующей системы уравнений:​​) / M, n​​ Кроме первого уравнения.​ клавиш Ctrl +​ в ситуации, когда​.​.​ Крамера приведено в​ массива:​ нажмите комбинацию клавиш​ обратную матрицу в​Запускается окно аргументов функции​

    ​x1​«Изменяя значения»​ последовательно. Таким образом,​ на матрицу​

    ​Аргумент​14​ = 0, 1,​​ Скопируем значения в​​ Shift + Enter.​ известен результат, но​​=MMULT(B6:D8,G2:G4)​​5​

    ​ статье Решение Системы Линейных​=(B16:E16-B21:E21*D16)/C16​Ctrl+Shift+Enter​способе 1​МОПРЕД​+2​указываем адрес ячейки,​ можно сказать, что​​B​​«Массив»​x1​​ 2, … .​​ первой строке двух​

    ​Умножим обратную матрицу Ах-1х​ неизвестны аргументы. Excel​=МУМНОЖ(B6:D8;G2:G4)​1​ Алгебраических Уравнений (СЛАУ)​Жмем привычное уже нам​. К ряду будет​, что подтверждает правильность​. Как видим, оно​x2​ в которой расположено​ мы решили данную​

    ​, которая состоит из​

    ​— это, собственно,​+2​M – максимальное значение​​ матриц в ячейки​​ на матрицу В​

    ​ подбирает значения до​Соедините результаты. Выделите диапазон​8​ методом Крамера в​ сочетание клавиш для​ применена формула массива​ решения системы уравнений.​

    ​ имеет только одно​

    ​+​ значение​ систему. Для того,​ одного столбца значений,​ адрес исходной таблицы.​x2​ производной по модулю.​ В6:Е6. В ячейку​​ (именно в таком​​ тех пор, пока​

    ​G6:G8​x​ MS EXCEL.​ применения формулы массива.​

    ​Решить систему уравнений можно​ поле –​x3​

    ​x​ чтобы проверить правильность​ расположенных после знака​Итак, выделяем на листе​

    ​ Чтобы найти М,​ В7 введем формулу:​ порядке следования множителей!).​​ вычисление не даст​​. Вставьте обобщенную формулу​

  • ​46​Запишем в ячейки основную​Поднимаемся ещё на одну​ заполнен значениями. Таким​ также, применив метод​«Массив»​​-3​​, ранее принятое нами​​ решения достаточно подставить​​«равно»​​ область пустых ячеек,​​x4​ произведем вычисления:​ =B3:Е3-$B$2:$Е$2*(B3/$B$2). Выделим диапазон​ Выделяем диапазон, где​ нужный итог.​​ (показана ниже) и​​При А=​​ матрицу системы и​​ строку выше. В​​ образом мы произвели​​ Гаусса. Для примера​
  • ​. В это поле​x4​ за​ в исходную систему​в выражениях. Для​ которая по размеру​=218​f’ (1) = -2​ В7:Е7. Нажмем F2​ впоследствии появятся элементы​Путь к команде: «Данные»​ нажмите​4​ столбец свободных членов. ​ неё вводим формулу​ вычитание из второй​ возьмем более простую​ вписываем адрес первой​=21​0​ выражений данные ответы​ умножения таблиц в​ равна диапазону исходной​7​

    Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в MS EXCEL

    ​ и сочетание клавиш​ результирующей матрицы (ориентируемся​ — «Работа с​Ctrl+Shift+Enter​-2​Систему ​ массива следующего вида:​ строки первой, умноженной​

    ​ систему уравнений из​ преобразованной матрицы. Для​Как и в первом​. После выполнения данных​

    ​ вместо соответствующих корней.​​ Экселе также имеется​ матрицы. Щелкаем по​x1​ = -11.​ Ctrl + Shift​ на число строк​

    ​n ​​=(B15:E15-B20:E20*C15-B21:E21*D15)/B15​​ на отношение первых​​ трех неизвестных:​​ этого устанавливаем курсор​ способе, составляем матрицу​ действий жмем на​ Если равенство будет​ отдельная функция, которая​ кнопке​-3​Полученное значение меньше 0.​ + Enter. Мы​ и столбцов матрицы​ «что-если»» — «Подбор​

    ​=MMULT(MINVERSE(B2:D4),G2:G4)​,​линейных алгебраических уравнений с ​

    ​Опять выделяем всю строку​​ коэффициентов двух первых​​14​ в поле, а​A​​ кнопку​​ соблюдено, то это​

    ​ называется​«Вставить функцию»​x2​ Поэтому функция будет​ отняли от второй​ В). Открываем диалоговое​

    ​ параметра».​​=МУМНОЖ(МОБР(B2:D4);G2:G4)​​X=​n​​ и применяем сочетание​​ выражений системы.​

    ​x1​ затем выделяем матричный​из коэффициентов уравнений​

    Система линейных уравнений в Excel

    ​«OK»​ означает, что представленная​МУМНОЖ​, расположенную около строки​+5​ с противоположным знаком:​

    ​ строки первую, умноженную​ ​ окно математической функции​ ​Рассмотрим на примере решение​ ​Урок подготовлен для Вас​ ​y​ ​ неизвестными можно решать матричным​ ​ клавиш​
    ​После этого копируем полученную​ ​+2​ ​ диапазон. После этого​ ​ и таблицу​ ​.​
    ​ система уравнений решена​ ​. Данный оператор имеет​ ​ формул.​ ​x3​ ​ f (х) =​ ​ на отношение первых​ ​ МУМНОЖ. Первый диапазон​

    ​ квадратного уравнения х2​ командой сайта office-guru.ru​,​​ методом только тогда,​​Ctrl+Shift+Enter​

    ​ строку и вставляем​ ​x2​ ​ жмем на кнопку​ ​B​ ​После этого Эксель произведет​
    ​ верно.​ ​ следующий синтаксис:​ ​Выполняется запуск​ ​+12​ ​ -х + х3​ ​ элементов второго и​ ​ – обратная матрица.​ ​ + 3х +​ ​Источник: http://www.excel-easy.com/examples/system-of-linear-equations.html​ ​B=​
    ​ когда определитель основной​ ​.​ ​ её в строчку​ ​+8​ ​«OK»​

    ​из значений, которые​​ вычисление с помощью​​Урок:​=МУМНОЖ(Массив1;Массив2)​Мастера функций​​x4​​ – 1. М​​ первого уравнения.​​ Второй – матрица​ 2 = 0.​Перевела: Ольга Гелих​12​

      ​ матрицы системы отличен​​Теперь смотрим на числа,​​ ниже.​x3​​. Данная функция выводит​​ стоят после знака​​ подбора параметра. Об​​Обратная матрица в Excel​​Выделяем диапазон, в нашем​​. Переходим в категорию​=213​​ = 11.​​Копируем введенную формулу на​

    ​ В.​
    ​ Порядок нахождения корня​

    ​Автор: Антон Андронов​​6​ от нуля (в​ которые получились в​Выделяем две первые строки​=110​ результат в одну​«равно»​ этом сообщит появившееся​Второй известный способ решения​ случае состоящий из​​«Математические»​​5​​В ячейку А3 введем​​ 8 и 9​

      ​Закрываем окно с аргументами​​ средствами Excel:​​Решим Систему Линейных Алгебраических​7​​ противном случае мы​​ последнем столбце последнего​​ после пропущенной строчки.​​7​​ ячейку, а не​​.​​ информационное окно. В​​ системы уравнений в​ четырех ячеек. Далее​​. В представившемся списке​​x1​

    ​ значение: а =​
    ​ строки. Так мы​

    ​ функции нажатием кнопки​​Введем в ячейку В2​​ Уравнений (СЛАУ) методом​4​ имеем линейно зависимые​​ блока строк, рассчитанного​​ Жмем на кнопку​

    ​x1​
    ​ массивом, поэтому для​

    ​Далее делаем ещё четыре​ нем следует нажать​
    ​ Экселе – это​
    ​ опять запускаем​

    Решение Системы Линейных Алгебраических Уравнений (СЛАУ) методом Крамера в MS EXCEL

    ​+​ 1. Точность –​ избавились от коэффициентов​ ОК. Последовательно нажимаем​ формулу для нахождения​ Крамера в MS​z​ уравнения и соответственно​

    ​ нами ранее. Именно​«Копировать»​-3​ получения расчета не​ таблицы. Каждая из​ на кнопку​ применение метода подбора​Мастер функций​

    ​ три знака после​​ перед а. Сохранили​ кнопку F2 и​ значения функции. В​ EXCEL. В этой​50​ решение систем не​ эти числа (​

    ​, которая расположена на​x2​ нужно прибегать к​

    ​ них является копией​«OK»​

    ​ параметров. Суть данного​, нажав значок​. После того, как​-2​ запятой. Для расчета​ только первое уравнение.​ комбинацию Ctrl +​ качестве аргумента применим​ статье нет теории,​Если​

    ​ единственное). В нашем​4​ ленте во вкладке​+5​ нажатию комбинации клавиш​ матрицы​.​ метода заключается в​

    ​«Вставить функцию»​ оно отыскано, выделяем​x3​ текущего значения х​

    Решение уравнений в Excel методом итераций Крамера и Гаусса

    ​Приведем к 0 коэффициенты​ Shift + Enter.​ ссылку на ячейку​ объяснено только как​

    ​А-1​ случае определитель =12.​

    Решение уравнений методом подбора параметров Excel

    ​,​«Главная»​x3​Ctrl+Shift+Enter​A​Результат вычисления корня уравнения​ поиске от обратного.​.​

    ​ его и жмем​+4​ в соседнюю ячейку​ перед в в​Получены корни уравнений.​

    ​ В1.​ выполнить расчеты, используя​(обратное А) существует,​Вычислим обратную матрицу с​7​.​

    1. ​=32​.​, только у этих​ будет находиться в​ То есть, основываясь​В категории​
    2. ​ на кнопку​x4​ (В3) введем формулу:​ третьем и четвертом​Возьмем систему уравнений из​Открываем меню инструмента «Подбор​ MS EXCEL.​ мы можем умножить​ помощью формулы массива​и​Пропускаем строку после последней​5​Функция производит подсчет результата​ копий поочередно один​
    3. ​ той ячейке, которую​ на известном результате,​«Математические»​«OK»​=83​ =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).​

    ​ уравнении. Копируем строки​ предыдущего примера:​ параметра». В графе​Метод Крамера применяется для​ обе части на​ МОБР().​5​ записи на листе.​x1​ и выводит его​ столбец заменен на​

    Как решить систему уравнений матричным методом в Excel

    ​ мы производим поиск​

    1. ​, запустившегося​.​6​
    2. ​В ячейке С3 проконтролируем​ 6 и 7​Для их решения методом​ «Установить в ячейку»​ решения систем линейных​А-1​Для этого выделите ячейки ​) будут являться корнями​ Выделяем первую ячейку​+​ в заранее выделенную​ таблицу​
    3. ​ поле​ неизвестного аргумента. Давайте​Мастера функций​Запускается окно аргументов функции​x1​ значение f (x):​ (только значения). Переносим​
    4. ​ Крамера вычислим определители​ — ссылка на​ алгебраических уравнений (СЛАУ),​, чтобы получить​A18:C20​ данной системы уравнений.​ в следующей строке.​x2​ ячейку. Как видим,​B​«Изменяя значения»​ для примера используем​, выделяем наименование​МОБР​+2​
    5. ​ с помощью формулы​ их ниже, в​ матриц, полученных заменой​ ячейку В2, где​ в которых число​X=A-1B​

    Решение системы уравнений методом Крамера в Excel

    ​ Проверить это можно,​ Кликаем правой кнопкой​

    ​-2​ в нашем случае​. У первой таблицы​. В нашем случае,​ квадратное уравнение​«МУМНОЖ»​

    ​. Оно по числу​x2​ =B3-СТЕПЕНЬ(B3;3)+1.​ строки 10 и​

    ​ одного столбца в​ находится формула. В​ неизвестных переменных равно​

    ​. Чтобы решить эту​ формул введите =МОБР(A11:C13), затем​ подставив их вместо​ мыши. В открывшемся​​x3​​ определитель равен​

    ​ – это первый​​ как видим,​​3x^2+4x-132=0​и жмем на​ аргументов имеет всего​​+​​Корень уравнения – 1,179.​ 11. Эти данные​

    Решение систем уравнений методом Гаусса в Excel

    ​ матрице А на​ поле «Значение» вводим​

    ​ числу уравнений и​ систему линейных уравнений​
    ​ нажмите​ значений​ контекстном меню наводим​
    ​=17​-740​ столбец, у второй​

    ​x​Принимаем значение​ кнопку​ одно поле –​

    ​x3​ Введем в ячейку​ должны остаться неизменными.​ столбец-матрицу В.​ 0. Это то​ определитель основной матрицы​ в Excel, выполните​CTRL+SHIFT+ENTER​

    1. ​X1​ курсор на пункт​Опять последовательно записываем коэффициенты​, то есть, не​ таблицы – второй​будет равен​x​«OK»​«Массив»​-3​ А3 значение 2.​ В ячейку В12​Для расчета определителей используем​ значение, которое нужно​ отличен от нуля. ​ следующие действия:​.​,​
    2. ​«Специальная вставка»​ в таблицу​ является равным нулю,​ и т.д.​6​за равное​
    3. ​.​. Тут нужно указать​x4​ Получим тот же​ вводим формулу массива.​ функцию МОПРЕД. Аргумент​ получить. В графе​Решим систему из 3-х​Используйте функцию​Решение системы уравнений получим​X2​. В запустившемся дополнительном​
    4. ​A​ что нам подходит.​Теперь нам нужно высчитать​.​0​Активируется окно аргументов функции​ адрес нашей таблицы.​=21​ результат:​Прямую прогонку по методу​ – диапазон с​
    5. ​ «Изменяя значение ячейки»​ уравнений.​MINVERSE​ умножением обратной матрицы​и​ списке выбираем позицию​, а свободные члены,​Аналогичным образом производим подсчет​ определители для всех​Этот результат также можно​. Высчитываем соответствующее для​МУМНОЖ​ Для этих целей​

    Примеры решения уравнений методом итераций в Excel

    ​Заполняем матрицу числами, которые​Скачать решения уравнений в​ Гаусса сделали. В​

    ​ соответствующей матрицей.​ — В1. Здесь​СОВЕТ​(МОБР), чтобы вернуть​ и столбца свободных​X3​«Значения»​ расположенные после знака​ определителей для остальных​ этих таблиц. Система​

    ​ проверить, подставив данное​​ него значение​​. В поле​​ устанавливаем курсор в​​ являются коэффициентами уравнения.​​ Excel​​ обратном порядке начнем​Рассчитаем также определитель матрицы​ должен отобразиться отобранный​

    ​: Решение СЛАУ методом​ обратную матрицу​ членов. Перемножить матрицы​в выражения.​

    ​.​«равно»​ трех таблиц.​

    ​ уравнений будет иметь​ значение в решаемое​f(x)​«Массив1»​ это поле. Затем​ Данные числа должны​Корень на заданном промежутке​

    ​ прогонять с последней​ А (массив –​ параметр.​ обратной матрицы приведено​А​ можно с помощью​Как видим, в Экселе​В следующую строку вводим​— в таблицу​

    ​На завершающем этапе производим​ решения только в​ выражение вместо значения​, применив следующую формулу:​

    ​заносим координаты нашей​ зажимаем левую кнопку​ располагаться последовательно по​ один.​ строки полученной матрицы.​

    ​ диапазон матрицы А).​После нажатия ОК отобразится​

    ​ в статье Решение​. Сначала выделите диапазон​

    источники:

    http://excel2.ru/articles/reshenie-sistemy-lineynyh-algebraicheskih-uravneniy-slau-metodom-obratnoy-matricy-v-ms-excel

    http://my-excel.ru/excel/reshenie-sistemy-uravnenij-v-excel.html

    Под матрицей подразумевается набор ячеек, расположенных непосредственно друг возле друга и которые образуют вместе прямоугольник. Не требуется особых навыков, чтобы выполнять различные действия с матрицей, достаточно тех же, какие используются во время работы с классическим диапазоном.

    Каждая матрица имеет свой адрес, записывающийся аналогичным диапазону способом. Первая составная часть – первая ячейка диапазона (расположенная в верхнем левом углу), а второй – последняя ячейка, которая находится в нижнем правом углу. 

    Содержание

    1. Формулы массива
    2. Что можно делать с матрицами
    3. Транспонирование
    4. Сложение
    5. Умножение
    6. Обратная матрица
    7. Поиск определителя матрицы
    8. Несколько примеров
    9. Умножение и деление
    10. Метод 1
    11. Метод 2
    12. Сложение и вычитание
    13. Метод 1
    14. Метод 2
    15. Пример транспонирования матрицы
    16. Поиск обратной матрицы
    17. Выводы

    Формулы массива

    В подавляющем количестве задач при работе с массивами (а матрицы и являются таковыми) используются формулы соответствующего типа. Базовое их отличие от обычных заключается в том, что последние выводят всего одно значение. Для применения формулы массива необходимо осуществить несколько действий:

    1. Выделить набор ячеек, где будут выводиться значения. 
    2. Непосредственно введение формулы. 
    3. Нажатие последовательности клавиш Ctrl + Shift + Ввод.

    После осуществления этих простых действий в поле ввода отображается формула массива. Ее можно отличить от обычной по фигурным скобкам.

    Для редактирования, удаления формул массива, надо выделить требуемый диапазон и сделать то, что нужно. Чтобы редактировать матрицу, нужно использовать ту же комбинацию, что и для ее создания. При этом нет возможности редактировать отдельный элемент массива.

    Что можно делать с матрицами

    В целом, есть огромное количество действий, применение которых возможно для матриц. Давайте каждое из них рассмотрим более подробно.

    Транспонирование

    Многие люди не понимают значения этого термина. Представьте, что вам нужно поменять строки и колонки местами. Вот это действие и называется транспонированием. 

    Перед тем, как это осуществить, необходимо выделить отдельную область, которая имеет такое же количество строчек, сколько столбцов есть у исходной матрицы и такое же количество столбцов. Чтобы более наглядно понять, как это работает, посмотрите на этот скриншот.Операции с матрицами в Excel

    Далее есть несколько методов, как можно осуществить транспонирование. 

    Первый способ следующий. Для начала нужно выделить матрицу, после чего скопировать ее. Далее выделяется диапазон ячеек, куда должен быть вставлен транспонированный диапазон. Далее открывается окно «Специальная вставка».

    Там есть множество операций, но нам нужно найти радиокнопку «Транспонировать». После совершения этого действия нужно подтвердить его нажатием клавиши ОК.Операции с матрицами в Excel

    Есть еще один способ, с помощью которого можно транспонировать матрицу. Сперва надо выделить ячейку, расположенную в верхнем левом углу диапазона, отведенного под транспонированную матрицу. Далее открывается диалоговое окно с функциями, где есть функция ТРАНСП. Ниже в примере вы более подробно узнаете, как это сделать. В качестве параметра функции используется диапазон, соответствующий изначальной матрице.Операции с матрицами в Excel

    После нажатия кнопки ОК сначала будет показано, что вы допустили ошибку. Ничего в этом страшного нет. Все потому, что вставленная нами функция не определена, как формула массива. Поэтому нам нужно совершить такие действия:

    1. Выделить набор ячеек, отведенных под транспонированную матрицу.
    2. Нажать клавишу F2.
    3. Нажать на горячие клавиши Ctrl + Shift + Enter.

    Главное достоинство метода заключается в способности транспонированной матрицы сразу корректировать содержащуюся в ней информацию, как только вносятся данные в изначальную. Поэтому рекомендуется использовать именно данный способ.

    Сложение

    Эта операция возможна лишь применительно к тем диапазонам, количество элементов которых такое же самое. Проще говоря, у каждой из матриц, с которыми пользователь собирается работать, должны быть одинаковые размеры. И приводим скриншот для наглядности.Операции с матрицами в Excel

    В матрице, которая должна получиться, нужно выделить первую ячейку и ввести такую формулу.

    =Первый элемент первой матрицы + Первый элемент второй матрицы 

    Далее подтверждаем ввод формулы с помощью клавиши Enter и используем автозаполнение (квадратик в правом нижнем углу), чтобы скопировать все значения на новую матрицу.Операции с матрицами в Excel

    Умножение

    Предположим, у нас есть такая таблица, которую следует умножить на 12.Операции с матрицами в Excel

    Догадливый читатель может легко понять, что метод очень похож на предыдущий. То есть, каждая из ячеек матрицы 1 должна умножаться на 12, чтобы в итоговой матрице каждая ячейка содержала значение, умноженное на этот коэффициент.

    При этом важно указывать абсолютные ссылки на ячейки.

    Итого, получится такая формула.

    =A1*$E$3Операции с матрицами в Excel

    Дальше методика аналогична предыдущей. Нужно это значение растянуть на необходимое количество ячеек. 

    Предположим, что необходимо перемножить матрицы между собой. Но есть лишь одно условие, при котором это возможно. Надо, чтобы количество столбцов и строк у двух диапазонов было зеркально одинаковое. То есть, сколько столбцов, столько и строк.Операции с матрицами в Excel

    Чтобы было более удобно, нами выделен диапазон с результирующей матрицей. Надо переместить курсор на ячейку в верхнем левом углу и ввести такую формулу =МУМНОЖ(А9:С13;Е9:H11). Не стоит забыть нажать Ctrl + Shift + Enter.Операции с матрицами в Excel

    Обратная матрица

    Если наш диапазон имеет квадратную форму (то есть, количество ячеек по горизонтали и вертикали одинаковое), то тогда получится найти обратную матрицу, если в этом есть такая необходимость. Ее величина будет аналогичной исходной. Для этого используется функция МОБР.

    Для начала следует выделить первую ячейку матрицы, в какую будет вставляться обратная. Туда вводится формула =МОБР(A1:A4). В аргументе указывается диапазон, для какого нам надо создать обратную матрицу. Осталось только нажать Ctrl + Shift + Enter, и готово.Операции с матрицами в Excel

    Поиск определителя матрицы

    Под определителем подразумевается число, находящееся матрицы квадратной формы. Чтобы осуществить поиск определителя матрицы, существует функция – МОПРЕД.

    Для начала ставится курсор в какой-угодно ячейке. Далее мы вводим =МОПРЕД(A1:D4)

    Несколько примеров

    Давайте для наглядности рассмотрим некоторые примеры операций, которые можно осуществлять с матрицами в Excel.

    Умножение и деление

    Метод 1

    Предположим, у нас есть матрица A, имеющая три ячейки в высоту и четыре – в ширину. Также есть число k, которое записывается в другой ячейке. После выполнения операции умножения матрицы на число появится диапазон значений, имеющий аналогичные размеры, но каждая ее часть умножается на k.Операции с матрицами в Excel

    Диапазон B3:E5 – это исходная матрица, которая будет умножаться на число k, которое в свою очередь расположено в ячейке H4. Результирующая матрица будет находиться в диапазоне K3:N5. Исходная матрица будет называться A, а результирующая – B. Последняя образуется путем умножения матрицы А на число k. 

    Далее вводится =B3*$H$4 в ячейку K3, где В3 — элемент A11 матрицы А.

    Не стоит забывать о том, ячейку H4, где указано число k необходимо вводить в формулу с помощью абсолютной ссылки. Иначе значение будет изменяться при копировании массива, и результирующая матрица потеряет работоспособность.Операции с матрицами в Excel

    Далее маркер автозаполнения (тот самый квадратик в правом нижнем углу) используется для того, чтобы скопировать значение, полученное в ячейке K3, во все другие ячейки этого диапазона.Операции с матрицами в Excel

    Вот у нас и получилось умножить матрицу A на определенное число и получить на выходе матрицу B.

    Деление осуществляется аналогичным образом. Только вводить нужно формулу деления. В нашем случае это =B3/$H$4.

    Метод 2

    Итак, основное отличие этого метода в том, в качетве результата выдается массив данных, поэтому нужно применить формулу массива, чтобы заполнить весь набор ячеек.

    Необходимо выделить результирующий диапазон, ввести знак равно (=), выделить набор ячеек, с соответствующими первой матрице размерами, нажать на звездочку. Далее выделяем ячейку с числом k. Ну и чтобы подтвердить свои действия, надо нажать на вышеуказанную комбинацию клавиш. Ура, весь диапазон заполняется.Операции с матрицами в Excel

    Деление осуществляется аналогичным образом, только знак * нужно заменить на /.

    Сложение и вычитание

    Давайте опишем несколько практических примеров использования методов сложения и вычитания на практике.

    Метод 1

    Не стоит забывать, что возможно сложение лишь тех матриц, размеры которых одинаковые. В результирующем диапазоне все ячейки заполняются значением, являющим собой сумму аналогичных ячеек исходных матриц.

    Предположим, у нас есть две матрицы, имеющие размеры 3х4. Чтобы вычислить сумму, следет в ячейку N3 вставить такую формулу:

    =B3+H3

    Тут каждый элемент являет собой первую ячейку матриц, которые мы собрались складывать. Важно, чтобы ссылки были относительными, поскольку если использовать абсолютные, не будут отображаться правильные данные.Операции с матрицами в Excel

    Далее, аналогично умножению, с помощью маркера автозаполнения распространяем формулу на все ячейки результирующей матрицы.Операции с матрицами в Excel

    Вычитание осуществляется аналогично, за тем лишь исключением, что используется знак вычитания (-), а не сложения.

    Метод 2

    Аналогично методу сложения и вычитание двух матриц, этот способ подразумевает использование формулы массива. Следовательно, в качестве ее результата будет выдаваться сразу набор значений. Поэтому нельзя редактировать или удалять какие-то элементы.

    Сперва надо выделить диапазон, отделенный под результирующую матрицу, а потом нажать на «=». Затем надо указать первый параметр формулы в виде диапазона матрицы А, нажать на знак + и записать второй параметр в виде диапазона, соответствующему матрице B. Подтверждаем свои действия нажатием комбинации Ctrl + Shift + Enter. Все, теперь вся результирующая матрица заполнена значениями.Операции с матрицами в Excel

    Пример транспонирования матрицы

    Допустим, нам надо создать матрицу АТ из матрицы А, которая у нас есть изначально методом транспонирования. Последняя имеет, уже по традиции, размеры 3х4. Для этого будем использовать функцию =ТРАНСП().Операции с матрицами в Excel

    Выделяем диапазон для ячеек матрицы АТ.Операции с матрицами в Excel

    Для этого надо перейти на вкладку «Формулы», где выбрать опцию «Вставить функцию», там найти категорию «Ссылки и массивы» и найти функцию ТРАНСП. После этого свои действия подтверждаются кнопкой ОК.

    Далее переходим в окно «Аргументы функции», где вводится диапазон B3:E5, который повторяет матрицу А. Далее надо нажать Shift + Ctrl, после чего кликнуть «ОК».

    Важно. Нужно не лениться нажимать эти горячие клавиши, потому что в ином случае будет рассчитано только значение первой ячейки диапазона матрицы АТ.

    В результате, у нас получается такая транспонированная таблица, которая изменяет свои значения вслед за исходной.Операции с матрицами в Excel

    Операции с матрицами в Excel

    Поиск обратной матрицы

    Предположим, у нас есть матрица А, которая имеет размеры 3х3 ячеек. Мы знаем, что для поиска обратной матрицы необходимо использовать функцию =МОБР().Операции с матрицами в Excel

    Теперь опишем, как это делать на практике. Сначала необходимо выделить диапазон G3:I5 (там будет располагаться обратная матрица). Необходимо найти на вкладке «Формулы» пункт «Вставить функцию».Операции с матрицами в Excel

    Откроется диалог «Вставка функции», где нужно выбрать категорию «Математические». И там в перечне будет функция МОБР. После того, как мы ее выберем, нужно нажать на клавишу ОК. Далее появляется диалоговое окно «Аргументы функции», в котором записываем диапазон B3:D5, который соответствует матрице А. Далее действия аналогичные транспонированию. Нужно нажать на комбинацию клавиш Shift + Ctrl и нажать ОК.

    Выводы

    Мы разобрали некоторые примеры, как можно работать с матрицами в Excel, а также описали теорию. Оказывается, что это не так страшно, как может показаться на первый взгляд, не так ли? Это только звучит непонятно, но на деле с матрицами среднестатистическому пользователю приходится иметь дело каждый день. Они могут использоваться почти для любой таблицы, где есть сравнительно небольшое количество данных. И теперь вы знаете, как можно себе упростить жизнь в работе с ними.

    Оцените качество статьи. Нам важно ваше мнение:

    Среда
    MS
    Excel
    представляет собой набор инструментов
    для обработки данных, как правило,
    числовых. Ядром данной прикладной
    программы являются функции MS
    Excel
    (финансовые, математические, статистические,
    баз данных и т.д.), предназначение которых
    ясно из названий. В этом параграфе мы
    применим средства Excel
    для выполнения действий над матрицами,
    что, надеемся, облегчит студентам решение
    задач.

    Итак,
    в Excel
    существуют следующие функции действий
    над матрицами:

    МУМНОЖ
    – возвращает произведение матриц
    (матрицы хранятся в массивах). Результатом
    является массив с таким же числом строк,
    как массив 1, и с таким же числом столбцов,
    как массив 2.

    МОПРЕД
    – возвращает определитель матрицы
    (матрица хранится в массиве).

    ТРАНСП
    – транспонирование матрицы.

    МОБР
    – возвращает обратную матрицу для
    матрицы, хранящейся в массиве.

    Для
    простейших действий над матрицами,
    такими как:

    • сложение/вычитание
      двух матриц;

    • умножение
      матрицы на число –

    использование
    встроенных функций MS
    Excel
    не требуется. Для выполнения арифметических
    действий, но не над числами, а над
    массивами чисел (матрицами), достаточно
    составить необходимую формулу для
    одного из элементов, а затем скопировать
    ее для всех остальных. За счет индексации
    (адреса) каждой ячейки листа MS
    Excel
    будет получен корректный результат.

    Пример
    2.15.

    Найдем матрицу С = А + В и D
    = 4*A,
    где А и В – матрицы вида:

    Решение. В данном случае необходимо
    ввести значения матрицы А и В (рис. 2.1).

    К оформлению никаких строгих правил
    не предъявляется:

    Рис.
    2.1.

    Исходные
    данные для примера

    Для
    нахождения матрицы С запишем в первый
    элемент результирующей матрицы формулу.
    Поскольку сложение матриц происходит
    поэлементно, то первый элемент матрицы
    С будет суммой первых элементов матриц
    А и В (рис. 2.2).

    Рис.2.2.
    Сумма
    первых элементов

    После
    нажатия клавиши «ENTER»
    в первой ячейке области, отведенной под
    матрицу С, появится результат сложения.
    Формулу, составленную для первого
    элемента, используем для нахождения
    оставшихся элементов. Для этого формулу
    необходимо скопировать и «забить» в
    нужные ячейки. Копирование и вставку
    можно провести тремя способами:

    – поставив
    курсор в первую клетку, вызвать в пункте
    главного меню «Правка» подпункт
    «Копировать/Вставить»;

    – правой
    кнопкой «мышки» нажать на первую ячейку
    и в появившемся меню выбрать
    «Копировать/Вставить»;

    – воспользоваться
    «горячими» клавишами: копировать –
    Ctrl+C;
    вставить – Ctrl+V.

    После
    копирования (занесения в буфер памяти)
    формулы, необходимо выделить область
    результирующей матрицы, в данном случае
    3 клетки х 3 клетки, и вставить формулу
    перечисленными тремя способами или
    просто нажав клавишу «ENTER».

    В
    результате должна получиться результирующая
    матрица С (рис. 2.3).

    Рис.
    2.3.

    Результат
    сложения матриц

    Аналогичным
    образом получим матрицу D
    = 4*A
    (рис. 2.4).

    Рис.
    2.4.

    Результат
    умножения матрицы на число

    Все
    перечисленные выше функции можно найти
    в полном алфавитном списке функций MS
    Excel,
    который можно вызвать тремя способами:

    – в
    пункте главного меню «Вставка» выбрать
    пункт «Функции» (рис. 2.5).

    Рис.
    2.5.

    – нажатием
    на панели инструментов иконки со значком
    fх
    (рис.
    2.6).

    Рис.
    2.6.

    – после
    ввода в желаемую ячейку символа «=»
    справа под панелью инструментов
    появляется выпадающее меню, в котором
    отображены последние 10 использованных
    функций (рис. 2.7 и рис. 2.8).

    Рис.
    2.7

    Рис.
    2.8

    Рассмотрим
    использование данных функций на примерах.

    Пример
    2.16.
    Найти
    произведение
    матриц

    А и В из примера 2.15.

    Решение.
    В
    задаче перемножения матриц прежде всего
    необходимо определить размерность
    итоговой матрицы. В нашем случае, матрица
    Е = А*В будет содержать 3 строки и 3 столбца.
    На листе Excel
    необходимо
    выделить область 3х3 и в первой ячейке
    вызвать функцию МУМНОЖ (рис. 2.9).

    Рис.
    2.9.

    Вызов
    функции МУМНОЖ

    В
    окне функции МУМНОЖ заносятся адреса
    перемножаемых массивов. Для этого в
    верхнем окне для адреса первого массива
    необходимо нажать кнопку
    и указать выделением на рабочем листе
    расположение элементов первого массива
    (рис. 2.10 и 2.11).

    Рис.
    2.10

    Рис.
    2.11

    Аналогично
    заполнить адрес второго массива в строке
    «Массив 2» (рис. 2.12).

    Рис.
    2.12

    Следующей
    задачей является перенос полученных
    результатов на рабочий лист. Поскольку
    в данном действии результатом является
    не одна ячейка, а девять, то вместо
    клавиши «ENTER»
    нажимается комбинация клавиш
    Ctrl+Shift+Enter.
    В результате должен получиться заполненный
    массив Е (рис. 2.13).

    Рис.
    2.13

    Аналогичным
    образом производится работа с функцией
    МОБР, которая служит для нахождения
    обратной матрицы.

    Пример
    2.17.
    С
    помощью Excel
    найти обратную матрицу для матрицы В
    из примера 2.15.

    Решение.
    Для
    отыскания матрицы В-1
    выделить на рабочем листе область 3х3 и
    вызвать функцию МОБР. Синтаксис этой
    функции предполагает адрес одного
    массива (рис. 2.14).

    Рис.
    2.14.

    Нахождение
    обратной матрицы

    В
    результате нажатия комбинации клавиш
    (поскольку требуется заполнить не одну
    ячейку) Ctrl+Shift+Enter
    в выделенной области будет размещаться
    обратная матрица для массива В (рис.
    2.15).

    Рис.
    2.15

    Аналогично
    выполняется транспонирование матрицы
    с единственным отличием – используется
    функция ТРАНСП.

    Пример
    2.18.

    Найти определитель матрицы А из примера
    2.15.

    Решение.
    Для
    нахождения определителей любых порядков
    используется функция МОПРЕД. Поскольку
    опредилитель – это число,
    характеризующее квадратную матрицу,
    нет необходимости в выделении области
    для ответа. Решением будет число,
    помещенное в одну ячейку (рис. 2.16).

    Рис.
    2.16.

    Необходимо
    помнить, что в случае, когда в результате
    действий над матрицами ответом будет
    являться массив, а не число, следует
    следить за выполнением двух требований:

    1. перед
      вызовом функции выделять область, в
      которой ожидается решение;

    2. после
      заполнения необходимой информации в
      окне таких функций, как МУМНОЖ, МОБР и
      ТРАНСП, следует нажимать комбинацию
      Ctrl+Shift+Enter.

    Контрольные
    вопросы

    1. Дайте
      определение матрицы.

    2. Перечислите
      виды матриц.

    3. Какие
      матрицы можно складывать, умножать?

    4. Дайте
      определение n-мерного вектора.

    5. Является
      ли вектор матрицей или наоборот?

    6. Что
      такое минор Mij
      матрицы А?

    7. Что
      такое алгебраическое дополнение Aij?

    8. Что
      такое определитель матрицы?

    9. Как
      вычислить определитель квадратной
      матрицы второго порядка, третьего
      порядка?

    10. Для
      всех ли матриц существует понятие
      определителя?

    11. Дайте
      определение обратной матрицы.

    12. Что
      такое неособенная матрица?

    13. Как
      вычислить обратную матрицу?

    14. Как
      проверить, является ли матрица В обратной
      к А?

    15. Запишите
      СЛАУ в матричной форме.

    16. Как
      решить СЛАУ методом Крамера?

    17. Как
      решить СЛАУ методом обратной матрицы?

    18. Запишите
      решение матричного уравнения AX = B.

    19. Какие
      системы можно решать методом Гаусса?

    20. Какие
      случаи возможны при решении СЛАУ?

    21. Что
      такое однородная СЛАУ?

    22. Дайте
      определение общего решения СЛАУ.

    23. Дайте
      определение частного решения СЛАУ.

    24. Дайте
      определение базисного решения СЛАУ.

    25. Сколько
      базисных решений может иметь СЛАУ.

    26. Что
      называется линейной комбинацией системы
      векторов?

    27. Какая
      система векторов называется
      линейно-зависимой (независимой)?

    28. Что
      называется базисом n-мерного пространства?

    29. Как
      определить линейную зависимость или
      независимость системы векторов?

    30. Как
      перейти от одного базиса векторного
      пространства к другому?

    Задание
    №2

    Для
    матриц А
    и В
    определить:

    а)
    3А
    +
    4В;

    б)
    АВ
    ВА;

    в)
    (АВ)-1.

    Задание
    №3

    Вычислить
    следующие определители:

    Задание
    №4

    Решите
    систему линейных уравнений двумя
    способами (после решения необходимо
    выполнить проверку):

    • по
      формулам Крамера;

    • матричным
      способом.

    1)
    2X1
    + 5X2
    — 8X3
    = 8 2) X1
    + 8X2
    — 7X3
    = 12

    4X1
    + 3X2
    — 9X3
    = 9 2X1
    + 3X2
    — 5X3
    = 7

    2X1
    + 3X2
    — 5X3
    = 7 6X1
    + 8X2
    -17X3
    = 17

    3)
    2X1
    + 3X2
    — 5X3
    = 7 4) 6X1
    + 6X2
    -14X3
    = 16

    5X1
    +11X2
    -16X3
    = 21 2X1
    + 5X2
    — 8X3
    = 8

    4X1
    + 3X2
    — 9X3
    = 9 4X1
    + 3X2
    + 9X3
    = 9

    5)
    -7X1
    + 3X2
    +8X3
    = 75 6) 13X1
    — 6X2
    = 32

    9X1
    — 4X2
    = -3 8X1
    +4X2
    + 1X3
    = 12

    X1
    — 7X2
    — 3X3
    = 12 2X1
    + 9X2
    + 5X3
    = -5

    7)
    7X1
    — 4X2
    = 61 8) 6X1
    + 3X2
    + 9X3
    = -111

    8X1
    +9X2
    — 6X3
    = 48 -7X1
    — 4X2
    — 2X3
    =
    52

    9X1
    — 6X2
    — 2X3
    = 99 X1
    — 7X2
    + 3X3
    = -47

    9)
    -5X1
    + 7X2
    +11X3
    = -2 10) 2X1
    + X2
    + 3X3
    = 11

    2X1
    + 6X2
    + 3X3
    = 11 3X1
    + 2X2
    — 5X3
    = -20

    3X1
    — 5X2
    + 4X3
    = 11 5X1
    — 2X2
    +3X3
    = -4

    11)
    2X1
    + 3X2
    — 6X3
    = 18 12) X1
    + 7X2
    — 5X3
    = 25

    4X1
    + 3X2
    — 9X3
    = 9 X1
    + 3X2
    — 5X3
    = 15

    2X1
    + 2X2
    — 5X3
    = 10 6X1
    + 8X2
    -17X3
    = 17

    13)
    2X1
    + 5X2
    — 5X3
    = 25 14) 6X1
    + 2X2
    -X3
    = 16

    5X1
    +11X2
    -16X3
    = 21 2X1
    + X2
    — 8X3
    = 36

    4X1
    + 2X2
    — X3
    = 8 4X1
    + 3X2
    + 9X3
    = 90

    15)
    -X1
    + 3X2
    +8X3
    = 24 16) 12X1
    — 6X2
    = 45

    9X1
    — 4X2
    = -36 8X1
    +X2
    + 7X3
    = 56

    X1
    — 7X2
    — 3X3
    = 12 2X1
    + 9X2
    + 5X3
    = -5

    17)
    7X1
    — 4X2
    = 60 18) 6X1
    + 2X2
    + 9X3
    = -81

    8X1
    +9X2
    — 3X3
    = 48 -7X1
    — 4X2
    — 2X3
    =
    52

    9X1
    — 6X2
    — 2X3
    = 99 X1
    — 5X2
    + 3X3
    = -45

    19)
    -3X1
    + 7X2
    +5X3
    = -20 20) 2X1
    + 5X2
    + 3X3
    = 110

    2X1
    + 6X2
    + 2X3
    = 120 3X1
    + 2X2
    — 3X3
    = -20

    3X1
    — 5X2
    + 4X3
    = 90 5X1
    — 12X2
    +3X3
    = -4

    21)
    2X1
    + 7X2
    — 8X3
    = 80 22) X1
    + 8X2
    — 3X3
    = 90

    14X1
    + 3X2
    — 9X3
    = 90 2X1
    + 3X2
    — 5X3
    = 70

    2X1
    + 3X2
    — 5X3
    = 70 X1
    + 8X2
    -15X3
    = 120

    23)
    2X1
    + 3X2
    — X3
    = 7 24) 6X1
    + 6X2
    -X3
    = 16

    5X1
    +5X2
    -16X3
    = 25 5X1
    + 5X2
    — 8X3
    = 80

    X1
    + 3X2
    — 9X3
    = 9 4X1
    + 3X2
    + 9X3
    = 90

    25)
    -7X1
    + 3X2
    +8X3
    = 64

    9X1
    — 4X2
    = -30

    X1
    — 7X2
    — 2X3
    = 14

    Задание
    №5

    Решить
    системы линейных уравнений методом
    Жордана–Гаусса

    Вариант
    №1 – решить системы №1, 6, 11

    Вариант
    №2 – решить системы №2, 7, 12

    Вариант
    №3 – решить системы №3, 8, 13

    Вариант
    №4 – решить системы №4, 9, 14

    Вариант
    №5 – решить системы №5, 10, 15

    Вариант
    №6 – решить системы №1, 7, 13

    Вариант
    №7 – решить системы №2, 8, 14

    Вариант
    №8 – решить системы №3, 9, 15

    Вариант
    №9 – решить системы №4, 10, 11

    Вариант
    №10 – решить системы №5, 6, 12

    Вариант
    №11 – решить системы №1, 7, 12

    Вариант
    №12 – решить системы №2, 9, 13

    Вариант
    №13 – решить системы №3, 10, 11

    Вариант
    №14 – решить системы №4, 8, 14

    Вариант
    №15 – решить системы №5, 9, 12

    Вариант
    №16 – решить системы №1, 8, 14

    Вариант
    №17 – решить системы №2, 10, 12

    Вариант
    №18 – решить системы №3, 9, 15

    Вариант
    №19 – решить системы №4, 7, 11

    Вариант
    №20 – решить системы №5, 6, 13

    Вариант
    №21 – решить системы №1, 6, 15

    Вариант
    №22 – решить системы №2, 8, 15

    Вариант
    №23 – решить системы №3, 6, 14

    Вариант
    №24 – решить системы №4, 10, 15

    Вариант
    №25 – решить системы №5, 7, 11

    1.
    1
    + Х2
    + Х3
    = 2 2. 2Х1
    — Х2
    + 3Х3
    = 3

    Х1+3Х2
    + Х3
    = 5 3Х1
    + Х2
    — 5Х3
    = 0

    Х1
    2
    +5Х3
    = -7 4Х1
    — Х2
    + Х3
    = 3

    1+3Х2
    — 3Х3
    = 14 Х1
    + 3Х2
    -13Х3
    = -6

    3.
    Х1
    + Х2
    + Х3
    + Х4
    = 6 4. 2Х1
    — Х2
    + Х3
    — Х4
    = 1

    Х1
    + Х2
    — Х3
    — Х4
    = 0 2Х1
    — Х2
    — 3Х4
    = 2

    Х1
    — Х2
    + Х3
    — Х4
    = 4 3Х1
    — Х3
    + Х4
    = -3

    Х1
    — Х2
    — Х3
    + Х4
    = 2 2Х1+2Х2
    -2Х3+
    4
    = -6

    11Х1
    2
    — Х3+
    Х4
    = -5

    5.
    Х1
    + Х2
    + Х3
    + Х4
    = 0 6. Х1
    +5Х2
    — 9Х3
    + 8Х4
    = 1

    Х2
    + Х3
    4
    5
    = 0 5Х1+18Х2
    + 4Х3
    + 5Х4
    = 12

    Х1
    +2Х2
    +3Х3
    = 2 2Х1
    +7Х2
    +3Х3
    + 4Х4
    = 5

    Х2
    + Х3+3Х4
    = -2 1Х1
    +3Х2
    +5Х3
    — 2Х4
    = 3

    Х3+2Х4
    5
    = 2

    7. 2Х1
    + 3Х2
    + 9Х3
    -7Х4
    = 3 8. 9Х1
    +4Х2
    + Х3
    + 7Х4
    = 2

    1
    +12Х2
    — 9Х3
    +8Х4
    = 3 2Х1+
    2
    + 3Х3
    + Х4
    = 6

    1
    + 6Х2
    +
    3
    — 2Х4
    = 3 3Х1
    +5Х2
    +2Х3
    + 2Х4
    =4

    1+
    2
    — Х3
    +
    Х4
    = 1

    9.
    1
    — 3Х2
    — 11Х3
    -15Х4
    = 1 10. 9Х1+12Х2
    + 3Х3
    +10Х4
    = 13

    1
    — 3Х2
    + 5Х3
    + 7Х4
    = 1 3Х1+
    2
    + Х3
    + 2Х4
    = 3

    1
    — 6Х2
    +
    3
    + 3Х4
    = 2 6Х1
    + 8Х2
    +2Х3
    + 5Х4
    = 7

    11.
    1
    — 4Х2
    + Х3
    + 3Х4
    = 5 12. 3Х1+3Х2
    + 5Х3
    -2Х4+3Х5
    = 1

    1

    2
    +2Х3
    +4Х4
    = 2 2Х1+2Х2
    + 4Х3
    4
    +3Х5
    = 2

    1
    + 7Х2
    — 4Х3
    — 6Х4
    = 3 Х1
    + Х2
    +
    3
    -2Х4+5Х5
    = 1

    1+2Х2
    +
    3
    -3Х4+9Х5
    = 2

    13.
    Х1
    + 2Х2
    + 3Х3
    = 2 14. Х1
    +
    Х2
    — 3Х3
    = -1

    Х1
    +
    Х2
    + 2Х3
    = 1 2Х1
    +
    Х2
    — 2Х3
    = 1

    1
    + 5Х2
    + 8Х3
    = 0 Х1
    + Х2
    +
    Х3
    = 3

    1
    + Х2
    + 4Х3
    = 2 Х1
    +2Х2
    -3Х3
    = 1

    15.
    1
    — Х2
    + Х3
    — 3Х4
    = 4

    1

    2
    +2Х3
    — 3Х4
    = 2

    1
    + Х2
    — Х3
    + Х4
    = 1

    1
    + Х2
    — Х3
    + 2Х4
    = 1

    Задание
    №6

    В
    естественном базисе заданы векторы.
    Установить, составляют ли они базис.
    Если составляют, то найти связь между
    новым и старым базисами, а также в новом
    базисе найти компоненты вектора
    .

    Для
    вариантов 1–10

    Для
    вариантов 11–20

    Для
    вариантов 21–30

    Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #

    Содержание:

    • 1 Умножение и деление матрицы на число в Excel
      • 1.1 Способ 1
      • 1.2 Способ 2
    • 2 Сложение и вычитание матриц в Excel
      • 2.1 Способ 1
      • 2.2 Способ 2
    • 3 Умножение матриц в Excel
    • 4 Транспонирование матрицы в Excel
    • 5 Нахождение обратной матрицы в Excel
    • 6 Нахождение определителя матрицы в Excel
      • 6.1 Как найти определить матрицы в Excel
    • 7 Видеоурок

    Решим Систему Линейных Алгебраических Уравнений (СЛАУ) методом обратной матрицы в MS EXCEL. В этой статье нет теории, объяснено только как выполнить расчеты, используя MS EXCEL.

    Решим систему из 3-х линейных алгебраических уравнений с помощью обратной матрицы (матричным методом).

    Запишем в ячейки основную матрицу системы и столбец свободных членов.

    Систему n линейных алгебраических уравнений с n неизвестными можно решать матричным методом только тогда, когда определитель основной матрицы системы отличен от нуля (в противном случае мы имеем линейно зависимые уравнения и соответственно решение систем не единственное). В нашем случае определитель =12.

    Для этого выделите ячейки A18:C20, а в Строке формул введите =МОБР(A11:C13) , затем нажмите CTRL+SHIFT+ENTER.

    Решение системы уравнений получим умножением обратной матрицы и столбца свободных членов. Перемножить матрицы можно с помощью формулы массива =МУМНОЖ() .

    Для этого выделите ячейки F18:F20, а в Строке формул введите =МУМНОЖ(A18:C20;F11:F13) , затем нажмите CTRL+SHIFT+ENTER.

    В файле примера также приведено решение системы 4-х и 5-и уравнений.

    КВАДРАТИЧНЫЕ ФОРМЫ

    Целью лабораторной работы “ Квадратичные формы ” является освоение матричных функций Excel и VBA.

    Выполнение лабораторной работы предполагает знание элементов векторного анализа, в частности, матричных операций.

    Лабораторная работа “Квадратичные формы” состоит из двух частей, в первую часть входят:

    – решение матричного уравнения в Excel;

    – решение матричного уравнения в Excel с предварительным преобразованием;

    – вычисление квадратичной формы в Excel;

    – вычисление квадратичной формы с использованием матричных функций Excel;

    – вычисление квадратичной формы с использованием матричных функций VBA,

    – операции над массивами в Excel;

    – операции над массивами в VBA.

    Критерием правильности решений матричных уравнений являются результаты проверки подстановкой найденных значений корней в исходные уравнения.

    Критерием правильности вычислений квадратичной формы является совпадение полученных значений трех способов вычислений.

    Выполнение лабораторной работы начинается с внесения исходных данных задания в соответствующие ячейки таблицы Excel,в выбранной адресации:

    – значения матрицы А – А8:D11;

    – значения вектора B – F8:F11;

    – значения вектора Y – H8:H11, рис. 6.1.

    Часть первая

    Решение матричного уравнения в Excel.

    Так как решением матричного уравнения АХ=В является вектор Х=А -1 В, то необходимо сформировать обратную матрицу А -1 , это выполняется в ячейках A14:D17, для чего:

    — через мастер функций fx вызвать матричную операцию МОБР, в окне “массив” которой указать адрес исходной матрицы А – А8:D11;

    — затем одновременно нажать клавиши Ctrl-Shift-Enter.

    В результате в ячейках A14:D17 появятся значения элементов обратной матрицы А -1 , рис. 6.2., а для любой ячейки диапазона A14:D17 в строке состояний подтверждение выполнения матричной операции <=МОБР(A8:D11)>.

    Так как результатом произведения исходной матрицы А на обратную матрицу А -1 является единичная матрица E, то для проверки правильности значений элементов полученной обратной матрицы необходимо:

    — через мастер функций fx вызвать матричную операцию МУМНОЖ, в окне рис. 6.3 “Массив1” которой указать адрес исходной матрицы А – А8:D11, а в окне “Массив2” которой указать адрес обратной матрицы А -1 – А14:D17;

    — затем одновременно нажать клавиши Ctrl-Shift-Enter.

    В результате в ячейках F14:I17 появятся значения элементов единичной матрицы E, рис. 6.2., а для любой ячейки диапазона F14:I17 в строке состояний подтверждение выполнения матричной операции

    Рис. 6.1.

    Рис. 6.2.

    Рис. 6.3.

    Для получения вектора решений Х=А -1 В необходимо:

    — через мастер функций fx вызвать матричную операцию МУМНОЖ, в окне “Массив1” которой указать адрес обратной матрицы А -1 – F14:I17, а в окне “Массив2” которой указать адрес вектора свободных членов B – F8:F11;

    — затем одновременно нажать клавиши Ctrl-Shift-Enter.

    В результате в ячейках J8:J11 появятся значения элементов вектора решений X , рис. 6.2., а для любой ячейки диапазона J8:J11 в строке состояний подтверждение выполнения матричной операции <=МУМНОЖ(F14:I17; F8:F11)>.

    Для проверки истинности значений элементов полученного вектора решений X необходимо подставить полученные значения в исходное уравнение АХ=В, для чего следует:

    — через мастер функций fx вызвать матричную операцию МУМНОЖ, в окне “Массив1” которой указать адрес исходной матрицы А – А8:D11, а в окне “Массив2” которой указать адрес полученного вектора решений X – J8:J11;

    — затем одновременно нажать клавиши Ctrl-Shift-Enter.

    В результате в ячейках K8:K11 появятся значения элементов вектора свободных членов B, рис. 6.2., совпадающие со значениями элементов исходного вектора B –F8:F11, а для любой ячейки диапазона K8:K11 в строке состояний подтверждение выполнения матричной операции <=МУМНОЖ(A8:D11; J8:J11)>.

    Программа Microsoft Office Excel позволяет выполнять операции с матрицами с помощью встроенных функций и формул. Рассмотрим основные операции над матрицами:

    • умножение и деление матрицы на число;
    • сложение, вычитание и умножение матриц;
    • транспонирование матрицы;
    • нахождение обратной матрицы;
    • вычисление определителя.

    Введем условные обозначения. Матрица А размерностью i x j — это прямоугольная таблица чисел, состоящая из i строк и j столбцов, аij — элемент матрицы.

    Умножение и деление матрицы на число в Excel

    Способ 1

    Рассмотрим матрицу А размерностью 3х4. Умножим эту матрицу на число k. При умножении матрицы на число получается матрица такой же размерности, что и исходная, при этом каждый элемент матрицы А умножается на число k.

    Введем элементы матрицы в диапазон В3:Е5, а число k — в ячейку Н4. В диапазоне К3:N5 вычислим матрицу В, полученную при умножении матрицы А на число k: В=А*k. Для этого введем формулу =B3*$H$4 в ячейку K3, где В3 — элемент а11 матрицы А.

    Примечание: адрес ячейки H4 вводим как абсолютную ссылку, чтобы при копировании формулы ссылка не менялась.

    С помощью маркера автозаполнения копируем формулу ячейки К3 вниз и вправо на весь диапазон матрицы В.

    Таким образом, мы умножили матрицу А в Excel и получим матрицу В.

    Для деления матрицы А на число k в ячейку K3 введем формулу =B3/$H$4 и скопируем её на весь диапазон матрицы В.

    Способ 2

    Этот способ отличается тем, что результат умножения/деления матрицы на число сам является массивом. В этом случае нельзя удалить элемент массива.

    Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий исходную матрицу А, нажимаем на клавиатуре знак умножить (*) и выделяем ячейку с числом k. После ввода формулы нажимаем сочетание клавиш Ctrl+Shift+Enter, чтобы значениями заполнился весь диапазон.

    Для выполнения деления в данном примере в диапазон вводим формулу =B3:E5/H4, т.е. знак «*» меняем на «/».

    Сложение и вычитание матриц в Excel

    Способ 1

    Следует отметить, что складывать и вычитать можно матрицы одинаковой размерности (одинаковое количество строк и столбцов у каждой из матриц). Причем каждый элемент результирующей матрицы С будет равен сумме соответствующих элементов матриц А и В, т.е. сij = аij + bij.

    Рассмотрим матрицы А и В размерностью 3х4. Вычислим сумму этих матриц. Для этого в ячейку N3 введем формулу =B3+H3, где B3 и H3 – первые элементы матриц А и В соответственно. При этом формула содержит относительные ссылки (В3 и H3), чтобы при копировании формулы на весь диапазон матрицы С они могли измениться.

    С помощью маркера автозаполнения скопируем формулу из ячейки N3 вниз и вправо на весь диапазон матрицы С.

    Для вычитания матрицы В из матрицы А (С=А — В) в ячейку N3 введем формулу =B3 — H3 и скопируем её на весь диапазон матрицы С.

    Способ 2

    Этот способ отличается тем, что результат сложения/вычитания матриц сам является массивом. В этом случае нельзя удалить элемент массива.

    Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий первую матрицу А, нажимаем на клавиатуре знак сложения (+) и выделяем вторую матрицу В. После ввода формулы нажимаем сочетание клавиш Ctrl+Shift+Enter, чтобы значениями заполнился весь диапазон.

    Умножение матриц в Excel

    Следует отметить, что умножать матрицы можно только в том случае, если количество столбцов первой матрицы А равно количеству строк второй матрицы В.

    Рассмотрим матрицы А размерностью 3х4 и В размерностью 4х2. При умножении этих матриц получится матрица С размерностью 3х2.

    Вычислим произведение этих матриц С=А*В с помощью встроенной функции =МУМНОЖ(). Для этого выделим диапазон L3:M5 — в нём будут располагаться элементы матрицы С, полученной в результате умножения. На вкладке Формулы выберем Вставить функцию.

    В диалоговом окне Вставка функции выберем Категория Математические — функция МУМНОЖОК.

    В диалоговом окне Аргументы функции выберем диапазоны, содержащие матрицы А и В. Для этого напротив массива1 щёлкнем по красной стрелке.

    Выделим диапазон, содержащий элементы матрицы А (имя диапазона появится в строке аргументов), и щелкнем по красной стрелке.

    Для массива2 выполним те же действия. Щёлкнем по стрелке напротив массива2.

    Выделим диапазон, содержащий элементы матрицы В, и щелкнем по красной стрелке.

    В диалоговом окне рядом со строками ввода диапазонов матриц появятся элементы матриц, а внизу — элементы матрицы С. После ввода значений нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

    ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы С.

    Мы получим результат умножения матриц А и В.

    Мы можем изменить значения ячеек матриц А и В, значения матрицы С поменяются автоматически.

    Транспонирование матрицы в Excel

    Транспонирование матрицы — операция над матрицей, при которой столбцы заменяются строками с соответствующими номерами. Обозначим транспонированную матрицу А Т .

    Пусть дана матрица А размерностью 3х4, с помощью функции =ТРАНСП() вычислим транспонированную матрицу А Т , причем размерность этой матрицы будет 4х3.

    Выделим диапазон Н3:J6, в который будут введены значения транспонированной матрицы.

    На вкладке Формулы выберем Вставить функцию, выберем категорию Ссылки и массивы — функция ТРАНСПОК.

    В диалоговом окне Аргументы функции указываем диапазон массива В3:Е5, содержащего элементы матрицы А. Нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

    ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы А Т .

    Нажмите для увеличения

    Мы получили транспонированную матрицу.

    Нахождение обратной матрицы в Excel

    Матрица А -1 называется обратной для матрицы А, если АžА -1 =А -1 žА=Е, где Е — единичная матрица. Следует отметить, что обратную матрицу можно найти только для квадратной матрицы (одинаковое количество строк и столбцов).

    Пусть дана матрица А размерностью 3х3, найдем для неё обратную матрицу с помощью функции =МОБР().

    Для этого выделим диапазон G3:I5, который будет содержать элементы обратной матрицы, на вкладке Формулы выберем Вставить функцию.

    В диалоговом окне Вставка функции выберем категорию Математические — функция МОБРОК.

    В диалоговом окне Аргументы функции указываем диапазон массива В3:D5, содержащего элементы матрицы А. Нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

    ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы А -1 .

    Нажмите для увеличения

    Мы получили обратную матрицу.

    Нахождение определителя матрицы в Excel

    Определитель матрицы — это число, которое является важной характеристикой квадратной матрицы.

    Как найти определить матрицы в Excel

    Пусть дана матрица А размерностью 3х3, вычислим для неё определитель с помощью функции =МОПРЕД().

    Для этого выделим ячейку Н4, в ней будет вычислен определитель матрицы, на вкладке Формулы выберем Вставить функцию.

    В диалоговом окне Вставка функции выберем категорию Математические — функция МОПРЕДОК.

    В диалоговом окне Аргументы функции указываем диапазон массива В3:D5, содержащего элементы матрицы А. Нажимаем ОК.

    Нажмите для увеличения

    Мы вычислили определитель матрицы А.

    В заключение обратим внимание на важный момент. Он касается тех операций над матрицами, для которых мы использовали встроенные в программу функции, а в результате получали новую матрицу (умножение матриц, нахождение обратной и транспонированной матриц). В матрице, которая получилась в результате операции, нельзя удалить часть элементов. Т.е. если мы выделим, например, один элемент матрицы и нажмём Del, то программа выдаст предупреждение: Нельзя изменять часть массива.

    Нажмите для увеличения

    Мы можем удалить только все элементы этой матрицы.

    Видеоурок

    Кратко об авторе:

    Шамарина Татьяна Николаевна — учитель физики, информатики и ИКТ, МКОУ «СОШ», с. Саволенка Юхновского района Калужской области. Автор и преподаватель дистанционных курсов по основам компьютерной грамотности, офисным программам. Автор статей, видеоуроков и разработок.

    Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
    стало известно автору, войдите на сайт как пользователь
    и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.

    Есть мнение?
    Оставьте комментарий

    Понравился материал?
    Хотите прочитать позже?
    Сохраните на своей стене и
    поделитесь с друзьями

    Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст

    Like this post? Please share to your friends:
  • Excel решение логических выражений
  • Excel решение логарифмических уравнений
  • Excel редактирование умной таблицы
  • Excel редактирование таблиц средства
  • Excel редактирование панели инструментов