Excel платеж что это

Содержание

  1. Функция ПЛТ
  2. Синтаксис
  3. Замечания
  4. Пример
  5. Аннуитет. Расчет периодического платежа в EXCEL. Погашение ссуды (кредита, займа)
  6. Задача1
  7. Задача2
  8. Примеры функции ПЛТ в Excel: расчет выплат по аннуитетному кредиту
  9. Синтаксис и особенности функции ПЛТ
  10. Примеры функции ПЛТ в Excel

Функция ПЛТ

ПЛТ — одна из финансовых функций, возвращающая сумму периодического платежа для аннуитета на основе постоянства сумм платежей и постоянной процентной ставки.

Воспользуйтесь средством Excel Formula Coach для расчета ежемесячных выплат по ссуде. При этом вы узнаете, как использовать функцию ПЛТ в формуле.

Синтаксис

ПЛТ(ставка; кпер; пс; [бс]; [тип])

Примечание: Более подробное описание аргументов функции ПЛТ см. в описании функции ПС.

Аргументы функции ПЛТ описаны ниже.

Ставка Обязательный аргумент. Процентная ставка по ссуде.

Кпер Обязательный аргумент. Общее число выплат по ссуде.

Пс Обязательный аргумент. Приведенная к текущему моменту стоимость или общая сумма, которая на текущий момент равноценна ряду будущих платежей, называемая также основной суммой.

Бс Необязательный. Значение будущей стоимости, то есть желаемого остатка средств после последней выплаты. Если аргумент «бс» опущен, предполагается значение 0 (например, значение будущей стоимости для займа равно 0).

Тип Необязательный аргумент. Число 0 (нуль) или 1, обозначающее, когда должна производиться выплата.

Когда нужно платить

В конце периода

В начале периода

Замечания

Выплаты, возвращаемые функцией ПЛТ, включают основные платежи и платежи по процентам, но не включают налогов, резервных платежей или комиссий, иногда связываемых со ссудой.

Убедитесь, что вы последовательны в выборе единиц измерения для задания аргументов «ставка» и «кпер». Если вы делаете ежемесячные выплаты по четырехгодичному займу из расчета 12 процентов годовых, то используйте значения 12%/12 для задания аргумента «ставка» и 4*12 для задания аргумента «кпер». Если вы делаете ежегодные платежи по тому же займу, то используйте 12 процентов для задания аргумента «ставка» и 4 для задания аргумента «кпер».

Совет Для нахождения общей суммы, выплачиваемой на протяжении интервала выплат, умножьте возвращаемое функцией ПЛТ значение на «кпер».

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу Enter. При необходимости измените ширину столбцов, чтобы видеть все данные.

Источник

Аннуитет. Расчет периодического платежа в EXCEL. Погашение ссуды (кредита, займа)

history 2 февраля 2015 г.

Рассчитаем в MS EXCEL сумму регулярного аннуитетного платежа при погашении ссуды. Сделаем это как с использованием функции ПЛТ() , так и впрямую по формуле аннуитетов. Также составим таблицу ежемесячных платежей с расшифровкой оставшейся части долга и начисленных процентов.

При кредитовании банки наряду с дифференцированными платежами часто используют аннуитетную схему погашения . Аннуитетная схема предусматривает погашение кредита периодическими равновеликими платежами (как правило, ежемесячными), которые включают как выплату основного долга, так и процентный платеж за пользование кредитом. Такой равновеликий платеж называется аннуитет. В аннуитетной схеме погашения предполагается неизменность процентной ставки по кредиту в течение всего периода выплат.

Задача1

Определить величину ежемесячных равновеликих выплат по ссуде, размер которой составляет 100 000 руб., а процентная ставка составляет 10% годовых. Ссуда взята на срок 5 лет.

Разбираемся, какая информация содержится в задаче:

  1. Заемщик ежемесячно должен делать платеж банку. Этот платеж включает: сумму в счет погашения части ссуды и сумму для оплаты начисленных за прошедший период процентов на остаток ссуды ;
  2. Сумма ежемесячного платежа (аннуитета) постоянна и не меняется на протяжении всего срока, так же как и процентная ставка. Также не изменяется порядок платежей – 1 раз в месяц;
  3. Сумма для оплаты начисленных за прошедший период процентов уменьшается каждый период, т.к. проценты начисляются только на непогашенную часть ссуды;
  4. Как следствие п.3 и п.1, сумма, уплачиваемая в счет погашения основной суммы ссуды, увеличивается от месяца к месяцу.
  5. Заемщик должен сделать 60 равновеликих платежей (12 мес. в году*5 лет), т.е. всего 60 периодов (Кпер);
  6. Проценты начисляются в конце каждого периода (если не сказано обратное, то подразумевается именно это), т.е. аргумент Тип=0. Платеж должен производиться также в конце каждого периода;
  7. Процент за пользование заемными средствами в месяц (за период) составляет 10%/12 (ставка);
  8. В конце срока задолженность должна быть равна 0 (БС=0).

Расчет суммы выплаты по ссуде за один период, произведем сначала с помощью финансовой функции MS EXCEL ПЛТ() .

Примечание . Обзор всех функций аннуитета в статье найдете здесь .

Эта функция имеет такой синтаксис: ПЛТ(ставка; кпер; пс; [бс]; [тип]) PMT(rate, nper, pv, [fv], [type]) – английский вариант.

Примечание : Функция ПЛТ() входит в надстройку «Пакет анализа». Если данная функция недоступна или возвращает ошибку #ИМЯ?, то включите или установите и загрузите эту надстройку (в MS EXCEL 2007/2010 надстройка «Пакет анализа» включена по умолчанию).

Первый аргумент – Ставка. Это процентная ставка именно за период, т.е. в нашем случае за месяц. Ставка =10%/12 (в году 12 месяцев). Кпер – общее число периодов платежей по аннуитету, т.е. 60 (12 мес. в году*5 лет) Пс — Приведенная стоимость всех денежных потоков аннуитета. В нашем случае, это сумма ссуды, т.е. 100 000. Бс — Будущая стоимость всех денежных потоков аннуитета в конце срока (по истечении числа периодов Кпер). В нашем случае Бс = 0, т.к. ссуда в конце срока должна быть полностью погашена. Если этот параметр опущен, то он считается =0. Тип — число 0 или 1, обозначающее, когда должна производиться выплата. 0 – в конце периода, 1 – в начале. Если этот параметр опущен, то он считается =0 (наш случай).

Примечание : В нашем случае проценты начисляются в конце периода. Например, по истечении первого месяца начисляется процент за пользование ссудой в размере (100 000*10%/12), до этого момента должен быть внесен первый ежемесячный платеж. В случае начисления процентов в начале периода, в первом месяце % не начисляется, т.к. реального пользования средствами ссуды не было (грубо говоря % должен быть начислен за 0 дней пользования ссудой), а весь первый ежемесячный платеж идет в погашение ссуды (основной суммы долга).

Решение1 Итак, ежемесячный платеж может быть вычислен по формуле =ПЛТ(10%/12; 5*12; 100 000; 0; 0) , результат -2 107,14р. Знак минус показывает, что мы имеем разнонаправленные денежные потоки: +100000 – это деньги, которые банк дал нам, -2107,14 – это деньги, которые мы возвращаем банку .

Альтернативная формула для расчета платежа (общий случай): =-(Пс*ставка*(1+ ставка)^ Кпер /((1+ ставка)^ Кпер -1)+ ставка /((1+ ставка)^ Кпер -1)* Бс)*ЕСЛИ(Тип;1/(ставка +1);1)

Если процентная ставка = 0, то формула упростится до =(Пс + Бс)/Кпер Если Тип=0 (выплата в конце периода) и БС =0, то Формула 2 также упрощается:

Вышеуказанную формулу часто называют формулой аннуитета (аннуитетного платежа) и записывают в виде А=К*S, где А — это аннуитетный платеж (т.е. ПЛТ), К — это коэффициент аннуитета, а S — это сумма кредита (т.е. ПС). K=-i/(1-(1+i)^(-n)) или K=(-i*(1+i)^n)/(((1+i)^n)-1), где i=ставка за период (т.е. Ставка), n — количество периодов (т.е. Кпер). Напоминаем, что выражение для K справедливо только при БС=0 (полное погашение кредита за число периодов Кпер) и Тип=0 (начисление процентов в конце периода).

Таблица ежемесячных платежей

Составим таблицу ежемесячных платежей для вышерассмотренной задачи.

Для вычисления ежемесячных сумм идущих на погашение основной суммы долга используется функция ОСПЛТ(ставка; период; кпер; пс; [бс]; [тип]) практически с теми же аргументами, что и ПЛТ() (подробнее см. статью Аннуитет. Расчёт в MS EXCEL погашение основной суммы долга ). Т.к. сумма идущая на погашение основной суммы долга изменяется от периода к периоду, то необходим еще один аргумент период , который определяет к какому периоду относится сумма.

Для вычисления ежемесячных сумм идущих на погашение процентов за ссуду используется функция ПРПЛТ (ставка; период; кпер; пс; [бс]; [тип]) с теми же аргументами, что и ОСПЛТ() (подробнее см. статью Аннуитет. Расчет в MS EXCEL выплаченных процентов за период ).

Примечание . Для определения суммы переплаты по кредиту (общей суммы выплаченных процентов) используйте функцию ОБЩПЛАТ() , см. здесь .

Конечно, для составления таблицы ежемесячных платежей можно воспользоваться либо ПРПЛТ() или ОСПЛТ() , т.к. эти функции связаны и в любой период: ПЛТ= ОСПЛТ + ПРПЛТ

Соотношение выплат основной суммы долга и начисленных процентов хорошо демонстрирует график, приведенный в файле примера .

Примечание . В статье Аннуитет. Расчет периодического платежа в MS EXCEL. Срочный вклад показано как рассчитать величину регулярной суммы пополнения вклада, чтобы накопить желаемую сумму.

График платежей можно рассчитать без использования формул аннуитета. График приведен в столбцах K:P файла примера лист Аннуитет (ПЛТ) , а также на листе Аннуитет (без ПЛТ) . Также тело кредита на начало и конец периода можно рассчитать с помощью функции ПС и БС (см. файл примера лист Аннуитет (ПЛТ), столбцы H:I ).

Задача2

Ссуда 100 000 руб. взята на срок 5 лет. Определить величину ежеквартальных равновеликих выплат по ссуде, чтобы через 5 лет невыплаченный остаток составил 10% от ссуды. Процентная ставка составляет 15% годовых.

Решение2 Ежеквартальный платеж может быть вычислен по формуле =ПЛТ(15%/12; 5*4; 100 000; -100 000*10%; 0) , результат -6 851,59р. Все параметры функции ПЛТ() выбираются аналогично предыдущей задаче, кроме значения БС, которое = -100000*10%=-10000р., и требует пояснения. Для этого вернемся к предыдущей задаче, где ПС = 100000, а БС=0. Найденное значение регулярного платежа обладает тем свойством, что сумма величин идущих на погашение тела кредита за все периоды выплат равна величине займа с противоположным знаком. Т.е. справедливо равенство: ПС+СУММ(долей ПЛТ, идущих на погашение тела кредита)+БС=0: 100000р.+(-100000р.)+0=0. То же самое и для второй задачи: 100000р.+(-90000р.)+БС=0, т.е. БС=-10000р.

Источник

Примеры функции ПЛТ в Excel: расчет выплат по аннуитетному кредиту

Функция ПЛТ в Excel входит в категорию «Финансовых». Она возвращает размер периодического платежа для аннуитета с учетом постоянства сумм платежей и процентной ставки. Рассмотрим подробнее.

Синтаксис и особенности функции ПЛТ

Синтаксис функции: ставка; кпер; пс; [бс]; [тип].

  • Ставка – это проценты по займу.
  • Кпер – общее количество платежей по ссуде.
  • Пс – приведенная стоимость, равноценная ряду будущих платежей (величина ссуды).
  • Бс – будущая стоимость займа после последнего платежа (если аргумент опущен, будущая стоимость принимается равной 0).
  • Тип – необязательный аргумент, который указывает, выплата производится в конце периода (значение 0 или отсутствует) или в начале (значение 1).

Особенности функционирования ПЛТ:

  1. В расчете периодического платежа участвуют только выплаты по основному долгу и платежи по процентам. Не учитываются налоги, комиссии, дополнительные взносы, резервные платежи, иногда связываемые с займом.
  2. При задании аргумента «Ставка» необходимо учесть периодичность начисления процентов. При ссуде под 6% для квартальной ставки используется значение 6%/4; для ежемесячной ставки – 6%/12.
  3. Аргумент «Кпер» указывает общее количество выплат по кредиту. Если человек совершает ежемесячные платежи по трехгодичному займу, то для задания аргумента используется значение 3*12.

Примеры функции ПЛТ в Excel

Для корректной работы функции необходимо правильно внести исходные данные:

Размер займа указывается со знаком «минус», т.к. эти деньги кредитная организация «дает», «теряет». Для записи значения процентной ставки необходимо использовать процентный формат. Если записывать в числовом, то применяется десятичное число (0,08).

Нажимаем кнопку fx («Вставить функцию»). Откроется окно «Мастер функций». В категории «Финансовые» выбираем функцию ПЛТ. Заполняем аргументы:

Когда курсор стоит в поле того или иного аргумента, внизу показывается «подсказка»: что необходимо вводить. Так как исходные данные введены в таблицу Excel, в качестве аргументов мы использовали ссылки на ячейки с соответствующими значениями. Но можно вводить и числовые значения.

Обратите внимание! В поле «Ставка» значение годовых процентов поделено на 12: платежи по кредиту выполняются ежемесячно.

Ежемесячные выплаты по займу в соответствии с указанными в качестве аргументов условиями составляют 1 037,03 руб.

Чтобы найти общую сумму, которую нужно выплатить за весь период (основной долг плюс проценты), умножим ежемесячный платеж по займу на значение «Кпер»:

Исключим из расчета ежемесячных выплат по займу платеж, произведенный в начале периода:

Для этого в качестве аргумента «Тип» нужно указать значение 1.

Детализируем расчет, используя функции ОСПЛТ и ПРПЛТ. С помощью первой покажем тело кредита, посредством второй – проценты.

Для подробного расчета составим таблицу:

Рассчитаем тело кредита с помощью функции ОСПЛТ. Аргументы заполняются по аналогии с функцией ПЛТ:

В поле «Период» указываем номер периода, для которого рассчитывается основной долг.

Заполняем аргументы функции ПРПЛТ аналогично:

Дублируем формулы вниз до последнего периода. Для расчета общей выплаты суммируем тело кредита и проценты.

Рассчитываем остаток по основному долгу. Получаем таблицу следующего вида:

Общая выплата по займу совпадает с ежемесячным платежом, рассчитанным с помощью функции ПЛТ. Это постоянная величина, т.к. пользователь оформил аннуитетный кредит.

Таким образом, функция ПЛТ может применяться для расчета ежемесячных выплат по вкладу или платежей по кредиту при условии постоянства процентной ставки и сумм.

Источник

Платежи по кредитам удобнее и быстрее рассчитывать с Microsoft Office Excel. На ручное вычисление уходит гораздо больше времени. В данной статье речь пойдет об аннуитетных платежах, особенностях их расчета, преимуществах и недостатках.

Содержание

  1. Что такое аннуитетный платеж
  2. Классификация аннуитета
  3. Преимущества и недостатки аннуитетных платежей
  4. Из чего состоит платеж по кредиту?
  5. Основная формула аннуитетного платежа в Excel
  6. Примеры использования функции ПЛТ в Excel
  7. Пример расчета суммы переплаты по кредиту в Excel
  8. Формула вычисления оптимального ежемесячного платежа по кредиту в Excel
  9. Особенности использования функции ПЛТ в Excel
  10. Расчет оплаты
  11. Этап 1: расчет ежемесячного взноса
  12. Этап 2: детализация платежей
  13. Расчет аннуитетных платежей по кредиту в Excel
  14. Расчет в MS Excel погашение основной суммы долга
  15. Вычисление остатка суммы основного долга (при БС=0, тип=0)
  16. Вычисление суммы основного долга, которая была выплачена в промежутке между двумя периодами
  17. Досрочное погашение с уменьшением срока или выплаты
  18. Кредитный калькулятор с нерегулярными выплатами
  19. Расчет периодического платежа в MS Excel. Срочный вклад
  20. Заключение

Что такое аннуитетный платеж

Способ ежемесячного погашения кредита, при котором вносимая сумма не меняется в течение всего времени кредитования. Т.е. человек по определенным числам каждого месяца вносит конкретную сумму денег до тех пор, пока полностью не погасит кредит.

Причем проценты по кредиту уже включены в общую сумму, вносимую в банк.

Классификация аннуитета

Аннуитетные платежи можно разделить на следующие виды:

  1. Фиксированные. Платежи, которые не меняются, имеют фиксированную ставку вне зависимости от внешних условий.
  2. Валютные. Возможность смены размера платежа при падении или росте курса валют.
  3. Индексируемые. Платежи, зависящие от уровня, показателя инфляции. В период кредитования их размер часто меняется.
  4. Переменные. Аннуитет, который может смениться в зависимости от состояния финансовой системы, инструментов.

Обратите внимание! Фиксируемые платежи предпочтительнее для всех заемщиков, т.к. имеют небольшой риск.

Преимущества и недостатки аннуитетных платежей

Чтобы лучше разбираться в теме, необходимо изучить ключевые особенности данного типа кредитных платежей. Он имеет следующие преимущества:

  • Установление конкретной суммы платежа и даты ее взноса.
  • Высокая доступность для заемщиков. Практически любой человек сможет оформить аннуитет, независимо от своего финансового положения.
  • Возможность понижения суммы ежемесячного взноса с повышением уровня инфляции.

Без недостатков не обошлось:

  • Высокая ставка. Заемщик переплатит большую сумму денег по сравнению с дифференциальным платежом.
  • Проблемы, возникающие при желании досрочно погасить долг.
  • Отсутствие перерасчетов при досрочных выплатах.

Из чего состоит платеж по кредиту?

Аннуитетный платеж имеет следующие составляющие части:

  • Проценты, переплачиваемые человеком при погашении ссуды.
  • Часть суммы основной задолженности.

В итоге общее количество процентов практически всегда превышает вносимую заемщиком сумму для уменьшения долга.

Основная формула аннуитетного платежа в Excel

Как и говорилось выше, в Microsoft Office Excel можно работать с различными типами платежей по кредитам и ссудам. Аннуитет не является исключением. В общем виде формула, с помощью которой можно быстро вычислить аннуитетные взносы, выглядит следующим образом:  

Важно! Раскрывать скобки в знаменателе данного выражения для его упрощения нельзя.

Основные значения формулы расшифровываются так:

  • АП – аннуитетный платеж (название сокращено).
  • О – размер основного долга заемщика.
  • ПС – процентная ставка, выдвигаемая ежемесячно конкретным банком.
  • С – число месяцев, на протяжении которых длится кредитование.

Для усвоения информации достаточно привести несколько примеров использования данной формулы. О них пойдет речь далее.

Примеры использования функции ПЛТ в Excel

Приведем простое условие задачи. Необходимо посчитать ежемесячный кредитный платеж, если банк выдвигает процент в размере 23%, а общая сумма составляет 25000 рублей. Кредитование продлится на протяжении 3-х лет. Задача решается по алгоритму:

  1. Составить общую таблицу в Excel по исходным данным.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Таблица, составленная по условию задачи. В действительности можно задействовать другие столбцы для ее размещения
  1. Активировать функцию ПЛТ и ввести для нее аргументы в соответствующее окошко.
  2. В поле «Ставка» прописать формулу «В3/В5». Это и будет процентная ставка по взятому кредиту.
  3. В строке «Кпер» написать значение в виде «В4*В5». Это будет общее количество выплат за весь срок кредитования.
  4. Заполнить поле «Пс». Здесь нужно указать первоначальную сумму, взятую в банке, прописав значение «В2».

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Необходимые действия в окне «Аргументы функции». Здесь указан порядок заполнения каждого параметра
  1. Удостовериться, что после нажать «ОК» в исходной таблице посчиталось значение «Ежемесячный платеж».

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Финальный результат. Ежемесячный платёж посчитан и выделен красным цветом

Дополнительная информация! Отрицательное число свидетельствует о том, что заемщик расходует деньги.

Пример расчета суммы переплаты по кредиту в Excel

В этой задаче надо подсчитать сумму, которую переплатит человек, взявший кредит 50000 рублей по процентной ставке 27% на 5 лет. Всего в год заемщик производит 12 выплат. Решение:

  1. Составить исходную таблицу данных.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Таблица, составленная по условию задачи
  1. Из общей суммы выплат отнять первоначальный размер суммы по формуле «=ABS(ПЛТ(B3/B5;B4*B5;B2)*B4*B5)-B2». Ее надо вставить в строку формул сверху главного меню программы.
  2. В итоге в последней строке созданной таблички появится сумма переплат. Заемщик переплатит 41606 рублей сверху.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Финальный результат. Практически двукратная переплата

Формула вычисления оптимального ежемесячного платежа по кредиту в Excel

Задача с таким условием: клиент зарегистрировал счет в банке на 200000 рублей с возможностью ежемесячного пополнения. Нужно посчитать количество платежа, который человек должен вносить каждый месяц, чтобы через 4 года на его счету оказалось 2000000 рублей. Ставка составляет 11%. Решение:

  1. Составить табличку по исходным данным.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Таблица, составленная по данным из условия задачи
  1. В строку ввода Эксель ввести формулу «=ПЛТ(B3/B5;B6*B5;-B2;B4)» и нажать «Enter» с клавиатуры. Буквы будут отличаться в зависимости от ячеек, в которых размещена таблица.
  2. Проверить, что сумма взноса автоматически посчиталась в последней строке таблицы.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Окончательный результат расчета

Обратите внимание! Таким образом, чтобы на счету клиенту через 4 года накопилось 2000000 рублей по ставке 11%, ему нужно каждый месяц вносить по 28188 рублей. Минус в сумме свидетельствует о том, что клиент несет убытки, отдавая деньги в банк.

Особенности использования функции ПЛТ в Excel

В общем виде данная формула записывается следующим образом: =ПЛТ(ставка; кпер; пс; [бс]; [тип]). У функции есть следующие особенности:

  1. Когда рассчитываются ежемесячные взносы, в рассмотрение берется исключительно годовая ставка.
  2. Указывая размер процентной ставки, важно сделать перерасчет, опираясь на число взносов за год.
  3. Вместо аргумента «Кпер» в формуле указывается конкретное число. Это период выплат по задолженности.

Расчет оплаты

В общем виде оплата по аннуитету рассчитывается в два этапа. Чтобы разбираться в теме, каждый из этапов необходимо рассмотреть по отдельности. Об этом пойдет речь далее.

Этап 1: расчет ежемесячного взноса

Чтобы в Excel посчитать сумму, которую нужно вносить каждый месяц по кредиту с фиксируемой ставкой, необходимо:

  1. Составить исходную таблицу и выделить ячейку, в которую надо выводить результат и нажать по кнопке «Вставить функцию» сверху.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Первоначальные действия
  1. В списке функций выбрать «ПЛТ» и нажать «ОК».

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Выбор функции в специальном окне
  1. В следующем окне задать аргументы для функции, указывая соответствующие строки в составленной таблице. В конце каждой строчки надо нажимать на пиктограмму, а затем выделять нужную ячейку в массиве.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Алгоритм действий по заполнению аргументов функции «ПЛТ»
  1. Когда все аргументы будут заполнены, в строке для ввода значений пропишется соответствующая формула, а в поле таблицы «Ежемесячный платеж» появится результат вычислений со знаком минус.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Финальный результат вычислений

Важно! После расчета взноса можно будет рассчитать сумму, которую переплатит заемщик за весь период кредитования.

Этап 2: детализация платежей

Сумму переплаты можно посчитать помесячно. В итоге человек поймет, сколько денег каждый месяц он будет тратить на кредит. Расчет по детализации выполняется следующим образом:

  1. Составить исходную таблицу на 24 месяца.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Изначальный табличный массив
  1. Поставить курсор в первую ячейку таблицы и вставить функцию «ОСПЛТ».

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Выбор функции детализации платежей
  1. Заполнить аргументы функции аналогичным образом.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Заполнение всех строк в окне аргументов оператора э
  1. При заполнении поля «Период» нужно сослаться на первый месяц в табличке, указав ячейку 1.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Заполнение аргумента «Период»
  1. Проверить, что первая ячейка в графе «Выплата по телу кредита» заполнилась.
  2. Чтобы заполнить все строки первого столбца, необходимо растянуть ячейку до конца таблицы

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Заполнение оставшихся строчек
  1. Выбрать функцию «ПРПЛТ» для заполнения второго столбца таблицы.
  2. Заполнить все аргументы в открывшемся окошке в соответствии со скриншотом ниже.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Заполнение аргументов для оператора «ПРПЛТ»
  1. Рассчитать общую ежемесячную выплату, сложив значения в двух предыдущих столбиках.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Расчет ежемесячных взносов
  1. Чтобы посчитать «Остаток к выплате», надо сложить процентную ставку с выплатой по телу кредита и растянуть до конца таблички, чтобы заполнить все месяцы кредитования.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Расчет остатка к выплате

Дополнительная информация! При расчете остатка на формулу надо навешивать знаки долларов, чтобы она не съехала при растягивании.

Расчет аннуитетных платежей по кредиту в Excel

За вычисление аннуитета в Excel отвечает функция ПЛТ. Принцип вычисления в общем виде заключается в выполнении следующих шагов:

  1. Составить исходную таблицу данных.
  2. Построить график погашения долга для каждого месяца.
  3. Выделить первую ячейку в столбике «Платежи по кредиту» и ввести формулу расчета «ПЛТ ($В3/12;$В$4;$В$2)».
  4. Получившееся значение растянуть для всех столбцов таблички.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Результат работы функции ПЛТ

Расчет в MS Excel погашение основной суммы долга

Аннуитетные платежи должны вноситься ежемесячно определенными суммами. Причем процентная ставка не изменяется.

Вычисление остатка суммы основного долга (при БС=0, тип=0)

Предположим, что кредит на 100000 рублей берется на 10 лет под 9%. Необходимо рассчитать сумму основного долга в 1 месяце 3-го года. Решение:

  1. Составить таблицу данных и вычислить ежемесячный платеж по приведенной выше формуле ПС.
  2. Рассчитать долю платежа, необходимую для погашения части долга, по формуле «=-ПМТ-(ПС-ПС1)*ставка=-ПМТ-(ПС +ПМТ+ПС*ставка)».
  3. Посчитать сумму основного долга за 120 периодов по известной формуле.
  4. Используя оператор ПРПЛТ найти количество процентов, выплаченных за 25 месяц.
  5. Проверить результат.

Вычисление суммы основного долга, которая была выплачена в промежутке между двумя периодами

Такой расчет лучше сделать простым способом. Нужно использовать следующие формулы для вычисления суммы в промежутке за два периода:

  • =«-БС(ставка; кон_период; плт; [пс]; [тип]) /(1+тип *ставка)».
  • = «+ БС(ставка; нач_период-1; плт; [пс]; [тип]) /ЕСЛИ(нач_период =1;1; 1+тип *ставка)».

Обратите внимание! Буквы в скобках заменяются конкретными значениями.

Досрочное погашение с уменьшением срока или выплаты

Если потребуется уменьшить срок кредитования, то придется производить дополнительные вычисления с помощью оператора ЕСЛИ. Так можно будет контролировать нулевой баланс, который не должен быть достигнут раньше окончания сроков выплаты.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Досрочное погашение с уменьшением срока

Чтобы снизить выплаты, нужно пересчитывать взнос за каждый предыдущий месяц.

formula-dlya-rascheta-annuitetnogo-platezha-v-excel

Уменьшение выплат кредитования

Кредитный калькулятор с нерегулярными выплатами

Есть несколько вариантов аннуитета, когда заемщик может вносить нефиксированные суммы в любой день месяца. В такой ситуации остаток долга и проценты считаются за каждый день. При этом в Экселе надо:

  1. Ввести числа месяца, по которым вносятся платежи, и указать их количество.
  2. Проконтролировать отрицательные и положительные суммы. Отрицательные предпочтительнее.
  3. Посчитать дни между двумя датами, в которые вносились деньги.

Расчет периодического платежа в MS Excel. Срочный вклад

В Excel можно быстро посчитать размер регулярных выплат при условии, что уже накопилась фиксированная сумма. Данное действие выполняется с использованием функции ПЛТ после составления исходной таблицы.

Заключение

Таким образом, аннуитетные платежи проще, быстрее и эффективнее рассчитывать именно в Эксель. За их вычисление отвечает оператор ПЛТ. С подробными примерами можно ознакомиться выше.

Оцените качество статьи. Нам важно ваше мнение:

Расчет платежей по кредиту удобнее и быстрее с помощью Microsoft Office Excel. Ручной расчет занимает намного больше времени. В этой статье речь пойдет об аннуитетных выплатах, особенностях их расчета, преимуществах и недостатках.

Что такое аннуитетный платеж

Метод ежемесячного погашения кредита, при котором сумма депозита не меняется в течение всего срока кредита. Это человек, в определенные дни каждого месяца, вкладывает определенную сумму денег до тех пор, пока ссуда не будет полностью погашена.

Кроме того, проценты по кредиту уже включены в общую сумму, выплачиваемую банку.

Классификация аннуитета

Аннуитетные выплаты можно разделить на следующие виды:

  1. Фиксированный. Платежи, которые не меняются, имеют фиксированную ставку независимо от внешних условий.
  2. Валюта. Возможность изменения суммы платежа в случае падения или повышения курса обмена.
  3. Проиндексировано. Выплаты в зависимости от уровня, уровня инфляции. В период аккредитации их размер часто меняется.
  4. Переменные. Доход, который может меняться в зависимости от состояния финансовой системы, инструментов.

Примечание! Фиксированные платежи предпочтительны для всех заемщиков, поскольку они несут небольшой риск.

Преимущества и недостатки аннуитетных платежей

Чтобы лучше разобраться в предмете, необходимо изучить основные характеристики этого вида кредитных выплат. Он имеет следующие преимущества:

  • Установите конкретную сумму платежа и дату его выплаты.
  • Высокая доступность для заемщиков. Подать заявку на получение аннуитета может практически любой, независимо от своего финансового положения.
  • Возможность уменьшения размера ежемесячного платежа по мере роста инфляции.

Не обошлось и без недостатков:

  • Высокий процент. Заемщик переплатит большую сумму сверх дифференцированного платежа.
  • Проблемы, возникающие, когда вы хотите погасить долг раньше, чем предполагалось.
  • Нет пересчета на предоплату.

Из чего состоит платеж по кредиту?

Аннуитетный платеж состоит из следующих компонентов:

  • Переплаченные проценты при погашении кредита.
  • Часть причитающегося капитала.

В результате общая сумма процентов почти всегда превышает сумму, внесенную заемщиком для уменьшения долга.

Как упоминалось выше, вы можете работать с различными типами ссуд и платежей по ссуде в Microsoft Office Excel. Аннуитет не исключение. В общих чертах формула, по которой можно быстро рассчитать аннуитетные взносы, выглядит следующим образом:  

Важно! Вы не можете раскрывать скобки в знаменателе данного выражения, чтобы упростить его.

Основные значения формулы расшифровываются следующим образом:

  • AP — аннуитетный платеж (сокращенное наименование).
  • О — размер основного долга заемщика.
  • PS — процентная ставка, предлагаемая ежемесячно конкретным банком.
  • С — количество месяцев, в течение которых предоставляется кредит.

Для усвоения информации достаточно привести несколько примеров использования этой формулы. О них и пойдет речь ниже.

Примеры использования функции ПЛТ в Excel

Вот простая постановка проблемы. Рассчитывать ежемесячный платеж по кредиту необходимо, если банк представляет процентную ставку 23%, а общая сумма составляет 25000 рублей. Срок кредита составляет 3 года. Задача решается по алгоритму:

  1. Создайте общую таблицу в Excel на основе исходных данных.

Таблица составлена ​​исходя из состояния задачи. Фактически, вы можете использовать другие столбцы, чтобы подогнать его под

  1. Активируйте функцию PMT и введите аргументы для нее в соответствующее поле.
  2. В поле «Ставка» напишите формулу «B3 / B5». Это будет процентная ставка по кредиту.
  3. В строке «Nper» напишите значение в виде «B4 * B5». Это будет общее количество выплат за весь срок кредита.
  4. Заполните поле «Ps». Здесь необходимо указать начальную снимаемую с банка сумму, прописав значение «В2».

формула-для-расчета-аннуитетного-платежа-v-excel Действия, необходимые в окне «Аргументы функции». Вот порядок заполнения каждого параметра

  1. Убедитесь, что после нажатия «ОК» в исходной таблице значение «Ежемесячный платеж» было рассчитано».

формула-для-расчета-аннуитетного-платежа-v-excel Окончательный результат. Ежемесячный платеж рассчитан и выделен красным

Дополнительная информация! Отрицательное число указывает на то, что заемщик тратит деньги.

Пример расчета суммы переплаты по кредиту в Excel

В этой задаче необходимо рассчитать сумму, которую человек, взявший ссуду в размере 50 000 рублей с процентной ставкой 27% на 5 лет, переплатит. Всего заемщик производит 12 платежей в год. Решение:

  1. Создайте таблицу исходных данных.

формула-для-расчета-аннуитетного-платежа-v-excel Таблица составлена ​​исходя из состояния задачи

  1. Вычтите начальную сумму из общей суммы платежа по формуле «= ABS (PMT (B3 / B5; B4 * B5; B2) * B4 * B5) -B2». Его необходимо ввести в строке формул вверху главного меню программы.
  2. В результате сумма переплат появится в последней строке созданного банка. На сумму более 41 606 рублей заемщик заплатит больше.

формула-для-расчета-аннуитетного-платежа-v-excel Окончательный результат. Почти двукратная переплата

Формула вычисления оптимального ежемесячного платежа по кредиту в Excel

Задача с условием: клиент зарегистрировал банковский счет на 200 000 рублей с возможностью ежемесячного пополнения. Необходимо рассчитать сумму платежа, которую человек должен производить каждый месяц, чтобы через 4 года на его счету было 2 000 000 рублей. Ставка 11%. Решение:

  1. Нарисуйте тарелку исходя из исходных данных.

формула-для-расчета-аннуитетного-платежа-v-excel Таблица составлена ​​из данных состояния проблемы

  1. Введите формулу «= PMT (B3 / B5; B6 * B5; -B2; B4)» в строке ввода Excel и нажмите «Enter» с клавиатуры. Буквы будут отличаться в зависимости от того, в каких ячейках находится таблица.
  2. Убедитесь, что сумма платежа рассчитана автоматически в последней строке таблицы.

формула-для-расчета-аннуитетного-платежа-v-excel Окончательный результат расчета

Примечание! Таким образом, чтобы покупатель накопил на счете клиента 2 000 000 рублей по ставке 11% за 4 года, он должен ежемесячно вносить 28 188 рублей. Минус в сумме указывает на то, что клиент терпит убытки, отдавая деньги банку.

Особенности использования функции ПЛТ в Excel

В общих чертах эта формула записывается следующим образом: = PMT (rate; nper; ps; [bs]; [type]). Функция имеет следующие характеристики:

  1. При расчете ежемесячных платежей учитывается только годовой платеж.
  2. При указании процентной ставки важно производить пересчет исходя из количества годовых платежей.
  3. Конкретное число указывается в формуле вместо аргумента Nper. Это период выплаты долга.

Расчет оплаты

Как правило, аннуитетный платеж рассчитывается в два этапа. Чтобы разобраться в теме, нужно рассматривать каждый из этапов отдельно. Об этом и пойдет речь далее.

Этап 1: расчет ежемесячного взноса

Чтобы рассчитать сумму, которую вы должны платить ежемесячно по ссуде с фиксированной ставкой в ​​Excel, вам необходимо:

  1. Создайте исходную таблицу, выберите ячейку, в которой вы хотите просмотреть результат, и нажмите кнопку «Вставить функцию» вверху.

формула-для-расчета-аннуитетного-платежа-v-excel Начальные действия

  1. Выберите «PMT» в списке функций и нажмите «OK».

формула-для-расчета-аннуитетного-платежа-v-excel Выбор функции в специальном окне

  1. В следующем окне задайте аргументы функции, указав соответствующие строки в скомпилированной таблице. В конце каждой строки нужно щелкнуть значок, после чего выбрать нужную ячейку в массиве.

формула-для-расчета-аннуитетного-платежа-v-excel Алгоритм действий по заполнению аргументов функции «PMT»

  1. Когда все аргументы будут заполнены, соответствующая формула будет записана в строке для ввода значений, а результат вычислений со знаком минус появится в поле таблицы «Ежемесячный платеж.

формула-для-расчета-аннуитетного-платежа-v-excel Окончательный результат расчетов

Важно! После расчета гранта можно будет рассчитать сумму, которую заемщик переплатит за весь срок кредита.

Этап 2: детализация платежей

Сумму переплаты можно рассчитывать ежемесячно. В результате человек поймет, сколько денег он будет тратить в ссуду каждый месяц. Расчет деталей выполняется следующим образом:

  1. Составьте справочную таблицу на 24 месяца.

формула-для-расчета-аннуитетного-платежа-v-excel Исходный массив таблиц

  1. Поместите курсор в первую ячейку таблицы и вставьте функцию «OSPLT».

формула-для-расчета-аннуитетного-платежа-v-excel Выбор функции детализации платежа

  1. Таким же образом дополните аргументы функции.

формула-для-расчета-аннуитетного-платежа-v-excel Заполните все строки в окне аргументов для оператора e

  1. При заполнении поля «Период» необходимо указать на табличке первый месяц, указав ячейку 1.

формула-для-расчета-аннуитетного-платежа-v-excel Заполнив тему «Срок»

  1. Убедитесь, что первая ячейка столбца «Платеж кредитной организации» заполнена.
  2. Чтобы заполнить все строки первого столбца, нужно растянуть ячейку до конца таблицы

формула-для-расчета-аннуитетного-платежа-v-excel Заполнение оставшихся строк

  1. Выберите функцию «PRPLT», чтобы заполнить второй столбец таблицы.
  2. Заполните все темы в открывшемся окне, как показано на скриншоте ниже.

формула-для-расчета-аннуитетного-платежа-v-excel Заполнение аргументов для оператора «PRPLT»

  1. Рассчитайте общий ежемесячный платеж, сложив значения в двух предыдущих столбцах.

формула-для-расчета-аннуитетного-платежа-v-excel Расчет ежемесячных платежей

  1. Чтобы рассчитать «Кредиторский остаток», вам нужно сложить процентную ставку с выплатой по основной части ссуды и растянуть до конца банка, чтобы заполнить все месяцы ссуды.

формула-для-расчета-аннуитетного-платежа-v-excel Расчет остатка к оплате

Дополнительная информация! При вычислении остальной части формулы необходимо повесить знаки доллара, чтобы они не выскользнули при растяжении.

Расчет аннуитетных платежей по кредиту в Excel

Функция PMT отвечает за расчет аннуитета в Excel. Принцип расчета в общих чертах заключается в выполнении следующих шагов:

  1. Создайте таблицу исходных данных.
  2. Составьте план погашения долга на каждый месяц.
  3. Выберите первую ячейку в столбце «Платежи по ссуде» и введите формулу для расчета «PMT ($ B3 / 12; $ B $ 4; $ B $ 2)».
  4. Растягивает полученное значение для всех столбцов в горшке.

формула-для-расчета-аннуитетного-платежа-v-excel Результат функции PMT

Расчет в MS Excel погашение основной суммы долга

Аннуитетные выплаты должны производиться ежемесячно в определенных размерах. Кроме того, процентная ставка не меняется.

Вычисление остатка суммы основного долга (при БС=0, тип=0)

Допустим, кредит в 100000 рублей взят на 10 лет под 9%. Необходимо рассчитать сумму основного долга за 1 месяц 3-го года. Решение:

  1. Создайте таблицу и рассчитайте ежемесячный платеж, используя приведенную выше формулу PS.
  2. Рассчитайте сумму взноса, необходимую для погашения части долга, по формуле «= -PMT- (PS-PS1) * ставка = -PMT- (PS + PMT + PS * ставка)».
  3. Рассчитайте сумму основного долга за 120 периодов по известной формуле.
  4. С помощью оператора ПРПЛТ найдите количество выплаченных процентов за 25-й месяц.
  5. Проверить результат.

Вычисление суммы основного долга, которая была выплачена в промежутке между двумя периодами

Этот расчет лучше всего производить просто. Для расчета суммы за два периода необходимо использовать следующие формулы:

  • = «- BS (ставка; end_period; plt; [ps]; [type])) / (1 + type * rate)».
  • = «+ BS (rate; start_period-1; plt; [ps]; [type])) / SE (start_perio = 1; 1; 1 + type * rate)».

Примечание! Буквы в скобках заменяются конкретными значениями.

Досрочное погашение с уменьшением срока или выплаты

Если вам нужно сократить срок кредита, вам нужно будет произвести дальнейшие расчеты с помощью оператора IF. Таким образом можно будет проверить нулевой баланс, который не должен быть достигнут до истечения срока платежа.

формула-для-расчета-аннуитетного-платежа-v-excel Досрочное погашение с сокращенным сроком погашения

Чтобы уменьшить выплаты, необходимо пересчитывать взнос за каждый предыдущий месяц.

формула-для-расчета-аннуитетного-платежа-v-excel Снижение выплат по кредиту

Кредитный калькулятор с нерегулярными выплатами

Существует несколько вариантов аннуитета, при которых заемщик может внести невыплаченную сумму в любой день месяца. В такой ситуации остаток долга и процентов рассчитывается на каждый день. В этом случае в Excel вам необходимо:

  1. Введите дни месяца, за которые производятся выплаты, и укажите их количество.
  2. Проверьте отрицательные и положительные суммы. Отрицательный вариант предпочтительнее.
  3. Подсчитайте дни между двумя датами внесения денег.

Расчет периодического платежа в MS Excel. Срочный вклад

В Excel вы можете быстро рассчитать сумму регулярных платежей, если фиксированная сумма уже накоплена. Это действие выполняется с помощью функции PMT после заполнения исходной таблицы.

Заключение

Таким образом, рассчитывать аннуитетные платежи в Excel проще, быстрее и эффективнее. За их расчет отвечает оператор PMT. Подробные примеры можно найти выше.

Excel для Microsoft 365 Excel для Microsoft 365 для Mac Excel для Интернета Excel 2021 Excel 2021 для Mac Excel 2019 Excel 2019 для Mac Excel 2016 Excel 2016 для Mac Excel 2013 Excel 2010 Excel 2007 Excel для Mac 2011 Excel Starter 2010 Еще…Меньше

ПЛТ — одна из финансовых функций, возвращающая сумму периодического платежа для аннуитета на основе постоянства сумм платежей и постоянной процентной ставки.

Excel Formula Coach

Воспользуйтесь средством Excel Formula Coach для расчета ежемесячных выплат по ссуде. При этом вы узнаете, как использовать функцию ПЛТ в формуле.

Синтаксис

ПЛТ(ставка; кпер; пс; [бс]; [тип])

Примечание: Более подробное описание аргументов функции ПЛТ см. в описании функции ПС.

Аргументы функции ПЛТ описаны ниже.

  • Ставка    Обязательный аргумент. Процентная ставка по ссуде.

  • Кпер    Обязательный аргумент. Общее число выплат по ссуде.

  • Пс    Обязательный аргумент. Приведенная к текущему моменту стоимость или общая сумма, которая на текущий момент равноценна ряду будущих платежей, называемая также основной суммой.

  • Бс    Необязательный. Значение будущей стоимости, то есть желаемого остатка средств после последней выплаты. Если аргумент «бс» опущен, предполагается значение 0 (например, значение будущей стоимости для займа равно 0).

  • Тип    Необязательный аргумент. Число 0 (нуль) или 1, обозначающее, когда должна производиться выплата.

Тип

Когда нужно платить

0 или опущен

В конце периода

1

В начале периода

Замечания

  • Выплаты, возвращаемые функцией ПЛТ, включают основные платежи и платежи по процентам, но не включают налогов, резервных платежей или комиссий, иногда связываемых со ссудой.

  • Убедитесь, что вы последовательны в выборе единиц измерения для задания аргументов «ставка» и «кпер». Если вы делаете ежемесячные выплаты по четырехгодичному займу из расчета 12 процентов годовых, то используйте значения 12%/12 для задания аргумента «ставка» и 4*12 для задания аргумента «кпер». Если вы делаете ежегодные платежи по тому же займу, то используйте 12 процентов для задания аргумента «ставка» и 4 для задания аргумента «кпер».

Совет    Для нахождения общей суммы, выплачиваемой на протяжении интервала выплат, умножьте возвращаемое функцией ПЛТ значение на «кпер».

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу Enter. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

Описание

8 %

Годовая процентная ставка

10

Количество месяцев платежей

10 000р.

Сумма займа

Формула

Описание

Результат

=ПЛТ(A2/12;A3;A4)

Ежемесячный платеж по займу в соответствии с условиями, указанными в качестве аргументов в диапазоне A2:A4.

(1 037,03р.)

=ПЛТ(A2/12;A3;A4;;1)

Ежемесячный платеж по займу в соответствии с условиями, указанными в качестве аргументов в диапазоне A2:A4, за исключением платежей, подлежащих оплате в начале периода.

(1 030,16р.)

Данные

Описание

6 %

Годовая процентная ставка

18

Количество месяцев платежей

50 000р.

Сумма займа

Формула

Описание

Оперативный результат

ПЛТ(A9/12;A10*12; 0;A11)

Необходимая сумма ежемесячных платежей для выплаты 50 000р. за 18 лет.

(129,08 ₽)

Нужна дополнительная помощь?

Функция ПЛТ в Excel используется для расчета фиксированного значения суммы периодических взносов для выплат задолженностей при условии, что процентная ставка является постоянной величиной, и возвращает соответствующее значение.

Примеры использования функции ПЛТ в Excel

С помощью функции ПЛТ можно рассчитать фиксированную сумму ежемесячного платежа по кредиту в банке, если известны тело кредита, значение годовой процентной ставки и число периодов выплат (либо срок действия договора кредитования). Также функция удобна для расчета суммы ежемесячных выплат по депозитам с дополнительными взносами.

Расчет ежемесячного платежа по кредиту в Excel

Пример 1. Определить размер ежемесячного платежа по кредиту с процентной ставкой 23% на сумму 25000 рублей, который должен быть выплачен на протяжении 3 лет.

Вид таблицы данных:

Пример 1.

Для получения искомого значения введем следующую формулу:

ПЛТ.

Описание аргументов:

  • B3/B5 – процентная ставка, приведенная к числу периодов выплат в году;
  • B4*B5 – число периодов выплат на протяжении действия кредитного договора;
  • B2 – начальная стоимость кредита (тело кредита).

Результат выполнения формулы:

Расчет ежемесячного платежа по кредиту.

Полученное значение является отрицательным числом, поскольку ежемесячные платежи по кредиту являются расходными операциями для заемщика.



Пример расчета суммы переплаты по кредиту в Excel

Пример 2. Определить сумму, которую переплатит заемщик, взявший кредит на сумму 50000 с годовой процентной ставкой 27% и 12 периодами выплат в год. Срок кредитования составляет 5 лет.

Вид таблицы данных:

Пример 2.

Для расчета суммы переплат необходимо из общей суммы выплат по кредиту за период действия договора вычесть тело кредита. Для этого используем следующую формулу:

=ABS(ПЛТ(B3/B5;B4*B5;B2)*B4*B5)-B2

Произведение результата, возвращаемого функцией ПЛТ и количества периодов выплат (B4*B5) соответствует общей сумме выплат за 5 лет. Поскольку функция ПЛТ возвращает отрицательное значение, используем функцию ABS для получения абсолютного значения. В результате вычислений получим:

Пример расчета суммы переплаты.

Клиент банка выплатит 50000 рублей тела кредита и еще около 42000 рублей процентов.

Формула вычисления оптимального ежемесячного платежа по кредиту в Excel

Пример 3. В банке был открыт депозитный счет с начальной суммой 200 000 рублей. Условия договора позволяют выполнять ежемесячное пополнение данного счета. Определить, какую сумму необходимо вносить ежемесячно, чтобы спустя 4 года получить 2000000 рублей. Процентная ставка составляет 11% годовых.

Вид таблицы данных:

Пример 3.

Искомое значение может быть определено с помощью следующей формулы:

=ПЛТ(B3/B5;B6*B5;-B2;B4)

Примечание: для получения корректного результата аргумент пс должен принимать отрицательное значение суммы первоначального взноса.

В результате расчетов получим следующее значение:

Формула вычисления ежемесячного платежа.

Для накопления 2 млн. рублей клиенту банка потребуется ежемесячно вносить на депозитный счет примерно 28000 рублей.

Особенности использования функции ПЛТ в Excel

Функция имеет следующую синтаксическую запись:

=ПЛТ(ставка; кпер; пс; [бс]; [тип])

Описание аргументов:

  • ставка – обязательный аргумент, характеризующий числовое значение годовой ставки по задолженности. Может быть указан числовым значением в виде десятичной дроби (например, 0,2 – соответствует 20% годовой ставки) или числом в процентном формате;
  • кпер – обязательный аргумент, принимающий числовое значение, характеризующее число периодов выплат по задолженности. Может принимать дробные числа, не усекая дробную часть и равномерно распределяя фиксированную сумму платежей между указанным числом периодов;
  • пс – обязательный аргумент, принимающий числовое значение, которое характеризует начальную стоимость финансового продукта. В случае с выдачей кредита, это значение эквивалентно телу кредита, то есть сумме средств, которую получает заемщик в кредитной организации;
  • [бс] – необязательный для заполнения аргумент, принимающий числовое значение, которое характеризует оставшуюся сумму задолженности. Например, если этот аргумент явно указан, можно определить, какой должна быть сумма ежемесячного взноса, чтобы при текущей процентной ставке остаток задолженности составил указанную сумму спустя определенное число периодов выплат. Если аргумент явно не указан, он принимается равным 0 (нулю), то есть задолженность будет полностью списана.
  • [тип] – необязательный для заполнения аргумент, принимающий одно из двух возможных числовых значений:
  1. 0 – выплаты производятся в конце периода (если явно не указан, используется по умолчанию).
  2. 1 – выплаты в начале периода.

Примечания:

  1. При расчете суммы ежемесячных выплат учитывается только значение годовой процентной ставки. В договорах некоторых финансовых организациях могут быть указаны дополнительные сборы и комиссии, влияющие на итоговый результат.
  2. При указании процентной ставки необходимо выполнять перерасчет в зависимости от количества периодов выплат в году. Платежи могут быть, например, ежемесячными или ежеквартальными. В первом случае аргумент ставка должен быть указан как n%/12, а во втором – n%/4, где n% — годовая процентная ставка.
  3. Аргумент кпер должен быть указан числом, которое получено в результате произведения количества лет, на которые выдан кредит, и количества периодов выплат в году. Например, если ипотечный кредит был выдан на 20 лет, а платежи необходимо делать ежемесячно, аргумент кпер должен быть указан как 20*12 или 240.
  4. Для расчета общей суммы платежей по кредиту можно умножить возвращаемый рассматриваемой функцией результат на количество периодов выплат.

Содержание

  • Расчет оплаты
    • Этап 1: расчет ежемесячного взноса
    • Этап 2: детализация платежей
  • Вопросы и ответы

Аннуитетный платеж по кредиту в Microsoft Excel

Прежде, чем брать заем, неплохо было бы рассчитать все платежи по нему. Это убережет заёмщика в будущем от различных неожиданных неприятностей и разочарований, когда выяснится, что переплата слишком большая. Помочь в данном расчете могут инструменты программы Excel. Давайте выясним, как рассчитать аннуитетные платежи по кредиту в этой программе.

Расчет оплаты

Прежде всего, нужно сказать, что существует два вида кредитных платежей:

  • Дифференцированные;
  • Аннуитетные.

При дифференцированной схеме клиент вносит в банк ежемесячно равную долю выплат по телу кредита плюс платежи по процентам. Величина процентных выплат каждый месяц уменьшается, так как уменьшается тело займа, с которого они рассчитываются. Таким образом и общий ежемесячный платеж тоже уменьшается.

При аннуитетной схеме используется несколько другой подход. Клиент ежемесячно вносит одинаковую сумму общего платежа, который состоит из выплат по телу кредита и оплаты процентов. Изначально процентные взносы насчитываются на всю сумму займа, но по мере того, как тело уменьшается, сокращается и начисление процентов. Но общая сумма оплаты остается неизменной за счет ежемесячного увеличения величины выплат по телу кредита. Таким образом, с течением времени удельный вес процентов в общем ежемесячном платеже падает, а удельный вес оплаты по телу растет. При этом сам общий ежемесячный платеж на протяжении всего срока кредитования не меняется.

Как раз на расчете аннуитетного платежа мы и остановимся. Тем более, это актуально, так как в настоящее время большинство банков используют именно эту схему. Она удобна и для клиентов, ведь в этом случае общая сумма оплаты не меняется, оставаясь фиксированной. Клиенты всегда знают сколько нужно заплатить.

Этап 1: расчет ежемесячного взноса

Для расчета ежемесячного взноса при использовании аннуитетной схемы в Экселе существует специальная функция – ПЛТ. Она относится к категории финансовых операторов. Формула этой функции выглядит следующим образом:

=ПЛТ(ставка;кпер;пс;бс;тип)

Как видим, указанная функция обладает довольно большим количеством аргументов. Правда, последние два из них не являются обязательными.

Аргумент «Ставка» указывает на процентную ставку за конкретный период. Если, например, используется годовая ставка, но платеж по займу производится ежемесячно, то годовую ставку нужно разделить на 12 и полученный результат использовать в качестве аргумента. Если применяется ежеквартальный вид оплаты, то в этом случае годовую ставку нужно разделить на 4 и т.д.

«Кпер» обозначает общее количество периодов выплат по кредиту. То есть, если заём берется на один год с ежемесячной оплатой, то число периодов считается 12, если на два года, то число периодов – 24. Если кредит берется на два года с ежеквартальной оплатой, то число периодов равно 8.

«Пс» указывает приведенную стоимость на настоящий момент. Говоря простыми словами, это общая величина займа на начало кредитования, то есть, та сумма, которую вы берете взаймы, без учета процентов и других дополнительных выплат.

«Бс» — это будущая стоимость. Эта величина, которую будет составлять тело займа на момент завершения кредитного договора. В большинстве случаев данный аргумент равен «0», так как заемщик на конец срока кредитования должен полностью рассчитаться с кредитором. Указанный аргумент не является обязательным. Поэтому, если он опускается, то считается равным нулю.

Аргумент «Тип» определяет время расчета: в конце или в начале периода. В первом случае он принимает значение «0», а во втором – «1». Большинство банковских учреждений используют именно вариант с оплатой в конце периода. Этот аргумент тоже является необязательным, и если его опустить считается, что он равен нулю.

Теперь настало время перейти к конкретному примеру расчета ежемесячного взноса при помощи функции ПЛТ. Для расчета используем таблицу с исходными данными, где указана процентная ставка по кредиту (12%), величина займа (500000 рублей) и срок кредита (24 месяца). При этом оплата производится ежемесячно в конце каждого периода.

Lumpics.ru

  1. Выделяем элемент на листе, в который будет выводиться результат расчета, и щелкаем по пиктограмме «Вставить функцию», размещенную около строки формул.
  2. Переход в Мастер функций в Microsoft Excel

  3. Производится запуск окошка Мастера функций. В категории «Финансовые» выделяем наименование «ПЛТ» и жмем на кнопку «OK».
  4. Переход в окно аргументов функции ПЛТ в Microsoft Excel

  5. После этого открывается окно аргументов оператора ПЛТ.

    В поле «Ставка» следует вписать величину процентов за период. Это можно сделать вручную, просто поставив процент, но у нас он указан в отдельной ячейке на листе, поэтому дадим на неё ссылку. Устанавливаем курсор в поле, а затем кликаем по соответствующей ячейке. Но, как мы помним, у нас в таблице задана годовая процентная ставка, а период оплаты равен месяцу. Поэтому делим годовую ставку, а вернее ссылку на ячейку, в которой она содержится, на число 12, соответствующее количеству месяцев в году. Деление выполняем прямо в поле окна аргументов.

    В поле «Кпер» устанавливается срок кредитования. Он у нас равен 24 месяцам. Можно занести в поле число 24 вручную, но мы, как и в предыдущем случае, указываем ссылку на месторасположение данного показателя в исходной таблице.

    В поле «Пс» указывается первоначальная величина займа. Она равна 500000 рублей. Как и в предыдущих случаях, указываем ссылку на элемент листа, в котором содержится данный показатель.

    В поле «Бс» указывается величина займа, после полной его оплаты. Как помним, это значение практически всегда равно нулю. Устанавливаем в данном поле число «0». Хотя этот аргумент можно вообще опустить.

    В поле «Тип» указываем в начале или в конце месяца производится оплата. У нас, как и в большинстве случаев, она производится в конце месяца. Поэтому устанавливаем число «0». Как и в случае с предыдущим аргументом, в данное поле можно ничего не вводить, тогда программа по умолчанию будет считать, что в нем расположено значение равное нулю.

    После того, как все данные введены, жмем на кнопку «OK».

  6. Окно аргументов функции ПЛТ в Microsoft Excel

  7. После этого в ячейку, которую мы выделили в первом пункте данного руководства, выводится результат вычисления. Как видим, величина ежемесячного общего платежа по займу составляет 23536,74 рубля. Пусть вас не смущает знак «-» перед данной суммой. Так Эксель указывает на то, что это расход денежных средств, то есть, убыток.
  8. Результат расчета ежемесячного платежа в Microsoft Excel

  9. Для того, чтобы рассчитать общую сумму оплаты за весь срок кредитования с учетом погашения тела займа и ежемесячных процентов, достаточно перемножить величину ежемесячного платежа (23536,74 рубля) на количество месяцев (24 месяца). Как видим, общая сумма платежей за весь срок кредитования в нашем случае составила 564881,67 рубля.
  10. Общая величина выплат в Microsoft Excel

  11. Теперь можно подсчитать сумму переплаты по кредиту. Для этого нужно отнять от общей величины выплат по кредиту, включая проценты и тело займа, начальную сумму, взятую в долг. Но мы помним, что первое из этих значений уже со знаком «-». Поэтому в конкретно нашем случае получается, что их нужно сложить. Как видим, общая сумма переплаты по кредиту за весь срок составила 64881,67 рубля.

Сумма переплаты по кредиту в Microsoft Excel

Урок: Мастер функций в Эксель

Этап 2: детализация платежей

А теперь с помощью других операторов Эксель сделаем помесячную детализацию выплат, чтобы видеть, сколько в конкретном месяце мы платим по телу займа, а сколько составляет величина процентов. Для этих целей чертим в Экселе таблицу, которую будем заполнять данными. Строки этой таблицы будут отвечать соответствующему периоду, то есть, месяцу. Учитывая, что период кредитования у нас составляет 24 месяца, то и количество строк тоже будет соответствующим. В столбцах указана выплата тела займа, выплата процентов, общий ежемесячный платеж, который является суммой предыдущих двух колонок, а также оставшаяся сумма к выплате.

Таблица выплат в Microsoft Excel

  1. Для определения величины оплаты по телу займа используем функцию ОСПЛТ, которая как раз предназначена для этих целей. Устанавливаем курсор в ячейку, которая находится в строке «1» и в столбце «Выплата по телу кредита». Жмем на кнопку «Вставить функцию».
  2. Вставить функцию в Microsoft Excel

  3. Переходим в Мастер функций. В категории «Финансовые» отмечаем наименование «ОСПЛТ» и жмем кнопку «OK».
  4. Переход в окно аргументов функции ОСПЛТ в Microsoft Excel

  5. Запускается окно аргументов оператора ОСПЛТ. Он имеет следующий синтаксис:

    =ОСПЛТ(Ставка;Период;Кпер;Пс;Бс)

    Как видим, аргументы данной функции почти полностью совпадают с аргументами оператора ПЛТ, только вместо необязательного аргумента «Тип» добавлен обязательный аргумент «Период». Он указывает на номер периода выплаты, а в нашем конкретном случае на номер месяца.

    Заполняем уже знакомые нам поля окна аргументов функции ОСПЛТ теми самыми данными, что были использованы для функции ПЛТ. Только учитывая тот факт, что в будущем будет применяться копирование формулы посредством маркера заполнения, нужно сделать все ссылки в полях абсолютными, чтобы они не менялись. Для этого требуется поставить знак доллара перед каждым значением координат по вертикали и горизонтали. Но легче это сделать, просто выделив координаты и нажав на функциональную клавишу F4. Знак доллара будет расставлен в нужных местах автоматически. Также не забываем, что годовую ставку нужно разделить на 12.

  6. Окно аргументов функции ОСПЛТ в Microsoft Excel

  7. Но у нас остается ещё один новый аргумент, которого не было у функции ПЛТ. Этот аргумент «Период». В соответствующее поле устанавливаем ссылку на первую ячейку столбца «Период». Данный элемент листа содержит в себе число «1», которое обозначает номер первого месяца кредитования. Но в отличие от предыдущих полей, в указанном поле мы оставляем ссылку относительной, а не делаем из неё абсолютную.

    После того, как все данные, о которых мы говорили выше, введены, жмем на кнопку «OK».

  8. Аргумент Период в окне аргументов функции ОСПЛТ в Microsoft Excel

  9. После этого в ячейке, которую мы ранее выделили, отобразится величина выплаты по телу займа за первый месяц. Она составит 18536,74 рубля.
  10. Результат вычисления функции ОСПЛТ в Microsoft Excel

  11. Затем, как уже говорилось выше, нам следует скопировать данную формулу на остальные ячейки столбца с помощью маркера заполнения. Для этого устанавливаем курсор в нижний правый угол ячейки, в которой содержится формула. Курсор преобразуется при этом в крестик, который называется маркером заполнения. Зажимаем левую кнопку мыши и тянем его вниз до конца таблицы.
  12. Маркер заполнения в Microsoft Excel

  13. В итоге все ячейки столбца заполнены. Теперь мы имеем график выплаты тела займа помесячно. Как и говорилось уже выше, величина оплаты по данной статье с каждым новым периодом увеличивается.
  14. Величина оплаты тела кредита помесячно в Microsoft Excel

  15. Теперь нам нужно сделать месячный расчет оплаты по процентам. Для этих целей будем использовать оператор ПРПЛТ. Выделяем первую пустую ячейку в столбце «Выплата по процентам». Жмем на кнопку «Вставить функцию».
  16. Переход в Мастер функций в программе Microsoft Excel

  17. В запустившемся окне Мастера функций в категории «Финансовые» производим выделение наименования ПРПЛТ. Выполняем щелчок по кнопке «OK».
  18. Переход в окно аргументов функции ПРПЛТ в Microsoft Excel

  19. Происходит запуск окна аргументов функции ПРПЛТ. Её синтаксис выглядит следующим образом:

    =ПРПЛТ(Ставка;Период;Кпер;Пс;Бс)

    Как видим, аргументы данной функции абсолютно идентичны аналогичным элементам оператора ОСПЛТ. Поэтому просто заносим в окно те же данные, которые мы вводили в предыдущем окне аргументов. Не забываем при этом, что ссылка в поле «Период» должна быть относительной, а во всех других полях координаты нужно привести к абсолютному виду. После этого щелкаем по кнопке «OK».

  20. Окно аргументов функции ПРПЛТ в Microsoft Excel

  21. Затем результат расчета суммы оплаты по процентам за кредит за первый месяц выводится в соответствующую ячейку.
  22. Результат вычисления функции ПРПЛТ в Microsoft Excel

  23. Применив маркер заполнения, производим копирование формулы в остальные элементы столбца, таким способом получив помесячный график оплат по процентам за заём. Как видим, как и было сказано ранее, из месяца в месяц величина данного вида платежа уменьшается.
  24. График выплат по процентам за кредит в Microsoft Excel

  25. Теперь нам предстоит рассчитать общий ежемесячный платеж. Для этого вычисления не следует прибегать к какому-либо оператору, так как можно воспользоваться простой арифметической формулой. Складываем содержимое ячеек первого месяца столбцов «Выплата по телу кредита» и «Выплата по процентам». Для этого устанавливаем знак «=» в первую пустую ячейку столбца «Общая ежемесячная выплата». Затем кликаем по двум вышеуказанным элементам, установив между ними знак «+». Жмем на клавишу Enter.
  26. Сумма общего ежемесячного платежа в Microsoft Excel

  27. Далее с помощью маркера заполнения, как и в предыдущих случаях, заполняем колонку данными. Как видим, на протяжении всего действия договора сумма общего ежемесячного платежа, включающего платеж по телу займа и оплату процентов, составит 23536,74 рубля. Собственно этот показатель мы уже рассчитывали ранее при помощи ПЛТ. Но в данном случае это представлено более наглядно, именно как сумма оплаты по телу займа и процентам.
  28. Общая сумма ежемесячного платежа в Microsoft Excel

  29. Теперь нужно добавить данные в столбец, где будет ежемесячно отображаться остаток суммы по кредиту, который ещё требуется заплатить. В первой ячейке столбца «Остаток к выплате» расчет будет самый простой. Нам нужно отнять от первоначальной величины займа, которая указана в таблице с первичными данными, платеж по телу кредита за первый месяц в расчетной таблице. Но, учитывая тот факт, что одно из чисел у нас уже идет со знаком «-», то их следует не отнять, а сложить. Делаем это и жмем на кнопку Enter.
  30. Остаток к выплате после первого месяца кредитования в Microsoft Excel

  31. А вот вычисление остатка к выплате после второго и последующих месяцев будет несколько сложнее. Для этого нам нужно отнять от тела кредита на начало кредитования общую сумму платежей по телу займа за предыдущий период. Устанавливаем знак «=» во второй ячейке столбца «Остаток к выплате». Далее указываем ссылку на ячейку, в которой содержится первоначальная сумма кредита. Делаем её абсолютной, выделив и нажав на клавишу F4. Затем ставим знак «+», так как второе значение у нас и так будет отрицательным. После этого кликаем по кнопке «Вставить функцию».
  32. Вставить функцию в программе Microsoft Excel

  33. Запускается Мастер функций, в котором нужно переместиться в категорию «Математические». Там выделяем надпись «СУММ» и жмем на кнопку «OK».
  34. Переход в окно аргументов функции СУММ в Microsoft Excel

  35. Запускается окно аргументов функции СУММ. Указанный оператор служит для того, чтобы суммировать данные в ячейках, что нам и нужно выполнить в столбце «Выплата по телу кредита». Он имеет следующий синтаксис:

    =СУММ(число1;число2;…)

    В качестве аргументов выступают ссылки на ячейки, в которых содержатся числа. Мы устанавливаем курсор в поле «Число1». Затем зажимаем левую кнопку мыши и выделяем на листе первые две ячейки столбца «Выплата по телу кредита». В поле, как видим, отобразилась ссылка на диапазон. Она состоит из двух частей, разделенных двоеточием: ссылки на первую ячейку диапазона и на последнюю. Для того, чтобы в будущем иметь возможность скопировать указанную формулу посредством маркера заполнения, делаем первую часть ссылки на диапазон абсолютной. Выделяем её и жмем на функциональную клавишу F4. Вторую часть ссылки так и оставляем относительной. Теперь при использовании маркера заполнения первая ячейка диапазона будет закреплена, а последняя будет растягиваться по мере продвижения вниз. Это нам и нужно для выполнения поставленных целей. Далее жмем на кнопку «OK».

  36. Окно аргументов функции СУММ в Microsoft Excel

  37. Итак, результат остатка кредитной задолженности после второго месяца выводится в ячейку. Теперь, начиная с данной ячейки, производим копирование формулы в пустые элементы столбца с помощью маркера заполнения.
  38. Маркер заполнения в программе Microsoft Excel

  39. Помесячный расчет остатков к оплате по кредиту сделан за весь кредитный период. Как и положено, на конец срока эта сумма равна нулю.

Расчет остатка к выплате по телу кредита в Microsoft Excel

Таким образом, мы произвели не просто расчет оплаты по кредиту, а организовали своеобразный кредитный калькулятор. Который будет действовать по аннуитетной схеме. Если в исходной таблице мы, например, поменяем величину займа и годовой процентной ставки, то в итоговой таблице произойдет автоматический пересчет данных. Поэтому её можно использовать не только один раз для конкретного случая, а применять в различных ситуациях для расчета кредитных вариантов по аннуитетной схеме.

Исходные данные изменены в программе Microsoft Excel

Урок: Финансовые функции в Excel

Как видим, при помощи программы Excel в домашних условиях можно без проблем рассчитать общий ежемесячный кредитный платеж по аннуитетной схеме, используя для этих целей оператор ПЛТ. Кроме того, при помощи функций ОСПЛТ и ПРПЛТ можно произвести расчет величины платежей по телу кредита и по процентам за указанный период. Применяя весь этот багаж функций вместе, существует возможность создать мощный кредитный калькулятор, который можно будет использовать не один раз для вычисления аннуитетного платежа.


Функция

ПЛТ(

)

, английский вариант PMT(),

позволяет рассчитать месячную сумму платежа по кредиту в случае аннуитетных платежей (когда за кредит платится равными частями).

Блок статей, посвященных теории и расчетам параметров аннуитета

размещен здесь

. В этой статье рассмотрены только синтаксис и примеры использования функции

ПЛТ()

.


Синтаксис функции

ПЛТ()


ПЛТ(ставка; кпер; пс; [бс]; [тип])


  • Ставка.

    Процентная ставка по кредиту (ссуде).

  • Кпер.

    Общее число выплат по кредиту.

  • пс.

    Сумма кредита.

  • Бс.

    Необязательный аргумент. Требуемое значение остатка по кредиту после последнего платежа. Если этот аргумент опущен, предполагается, что он равен 0 (кредит будет полностью возвращен).

  • Тип.

    Необязательный аргумент. Принимает значение 0 (нуль) или 1. Если =0 (или опущен), то принимается, что регулярный платеж осуществляется в конце периода, если 1, то в начале периода (сумма регулярного платежа будет несколько меньше).

Выплаты, возвращаемые функцией

ПЛТ()

, включают основные платежи и платежи по процентам, но не включают налогов, резервных платежей или комиссий, иногда связываемых со ссудой.

Пример 1

Предположим, человек планирует взять кредит в размере 50 000 руб. (ячейка

В8

) в банке под 14% годовых (

B6

) на 24 месяца (

В7

) (см.

файле примера

).

Расчет Месячной суммы платежа по такому кредиту с помощью функции

ПЛТ()

=ПЛТ(B6/12;B7;B8)


СОВЕТ

: Убедитесь, что Вы последовательны в выборе временных единиц измерения для задания аргументов «ставка» и «кпер». В нашем случае рассчитываются

ежемесячные

выплаты по двухгодичному займу (24

месяца

) из расчета 14 процентов годовых (

14% / 12 месяцев

).

Расчет Месячной суммы платежа по такому кредиту с помощью БЕЗ функции

ПЛТ()

=-B8*(B6/12*(1+B6/12)^B7)/((1+B6/12)^B7-1)

Для нахождения суммы переплаты, умножьте возвращаемое функцией

ПЛТ()

значение на «кпер» (получите число со знаком минус) и прибавьте сумму кредита. В нашем случае переплата составит 7 615,46 руб. (за 2 года).

Пример 2

Предположим, человек планирует ежемесячно откладывать деньги, чтобы скопить через 5 лет (ячейка

E7

) 1 млн. рублей (

E8

). Деньги ежемесячно он планирует относить в банк и пополнять свой вклад. В банке действует процентная ставка 10% (

E6

) и человек полагает, что она будет действовать без изменений в течение 5 лет. Какую сумму человек должен ежемесячно относить в банк, чтобы таким образом через 5 лет скопить 1 млн. руб.? (см.

файле примера

).

Расчет ежемесячной суммы платежа в таком случае можно также с помощью функции

ПЛТ()

=ПЛТ(E6/12;E7*12;0;E8)

К концу 5 летнего периода сумма начисленных процентов составит более 225 тыс. руб., т.е. если бы человек просто складывал бы деньги себе в сейф, то он скопил бы только порядка 775 тыс. руб.

Файлы к уроку:

  • Для спонсоров Boosty
  • Для спонсоров VK
  • YouTube
  • VK

Ссылки:

  • Страница курса
  • Плейлист YouTube
  • Плейлист ВК

Описание

В этом уроке мы вспомним как вычислить ежемесячный платеж в Excel. Разберем 4 способа: подбор параметра, поиск решений, функция ПЛТ, формула вычисления ежемесячного платежа.

Решение

Подбор параметра

Подготовим таблицу с параметрами и таблицу с графиком платежей. В таблице с параметрами введем временно абсолютно любое число.

Запустим подбор параметра:

  1. Установить в ячейке — Сослаться на самый последний конечный баланс
  2. Значение — 0
  3. Изменяя значение ячейки — Платеж из таблицы с параметрами
Поиск решений

Сделаем аналогичную заготовку первому способу. Запускаем поиск решений и заполняем форму следующим образом:

  1. Оптимизировать целевую функцию — Самый последний конечный баланс
  2. Изменяя ячейки переменных — Ячейка с платежом в таблице с параметрами
  3. Ограничения — Последний конечный баланс меньше или равен 0
Функция ПЛТ

Для удобства заготовим маленьку таблицу с параметрами.

У функции ПЛТ 3 главных параметра:

  • Ежемесячная ставка
  • Количество платежей (количество месяцев)
  • Сумма кредита
Формула вычисления ежемесячного платежа

Совсем необязательно пользоваться любыми из приведенных способов. Можно просто воспользоваться формулой для вычисления аннуитетного платежа без использования функций и другого функционала Excel.

Примененные функции

  • ПЛТ
  • Поиск решений
  • Подбор параметра

Excel Разное

Номер урока Урок Описание
1 Excel Разное. 4 способа вычислить ежемесячный платеж по кредиту (Подбор параметра, Поиск решений, ПЛТ, формула) В этом уроке мы разберем 4 способа вычислить ежемесячный платеж по кредиту: подбор параметра, поиск решений, функция ПЛТ, формула для вычисления ежемесячного платежа.
2 Excel Разное. Суммировать несколько категорий с СУММЕСЛИМН Разберем как с помощью одной формулы суммировать несколько категорий, используя СУММЕСЛИМН.


КУРС

EXCEL ACADEMY

Научитесь использовать все прикладные инструменты из функционала MS Excel.

Мы подумали, что блок статей о формулах Excel просто не сможет обойтись без обозревания таких удобных и востребованных функций, как финансовые. Поэтому представляем вашему вниманию небольшой экскурс в мир «денежных» функций.

По «старой» традиции начнем с того, как найти финансовые формулы в программе. Сделать это очень просто: на главной панели найти кнопку «Формулы», нажать на нее и выбрать в появившемся списке название раздела «Финансовые».

Дальше выпадет перечень формул, которые вы можете использовать:

Рис. 1. Список финансовых функций

В данном разделе больше 50 функций, которые могут помочь специалистам упростить расчеты и сэкономить время на составление формул.

Разумеется, рассказать о всех возможностях в рамках этой статьи мы не успеем, но рассмотрим некоторые их них. Если вы хотите узнать о функционале математических функций в Excel, то скачивайте бесплатный гайд «Математические функции Excel».

1. Функция ДОХОД()

Очень популярная формула у финансистов. Она позволяет высчитать доход от ценных бумаг, по которым происходят выплаты процентов за определенный период.

Аргументов у функции много, поэтому медленно и по порядку со всеми разберемся!

Дата_согл – дата покупки ценных бумаг.

Дата_вступл_в_силу – дата, показывающая истечение срока действия бумаг.

Ставка – купонная ставка ценных бумаг за год.

Цена – цена бумаг на 100 руб. номинальной стоимости.

Погашение – выкупная стоимость ценных бумаг на 100 руб. номинальной стоимости.

Частота – цифра, показывающая количество выплат в год. Ежегодные выплаты – 1, полугодовые – 2, ежеквартальные – 4.

Помимо перечисленных обязательных аргументов есть один необязательный:

Базис – число, характеризующее способ вычисления дня. По умолчанию ставится 0.

Примечание. Обязательные аргументы выделены жирным шрифтом, а необязательные – обычным.

Рис.2. Применение функции ДОХОД()

Замечание. Не рекомендуется вводить дату как текстовую запись. Лучше использовать функцию ДАТА во избежание ошибок и проблем с работой функции.

Например, число 21 сентября 2013 г. лучше записать так: ДАТА(2013,09,21).

2. Функция ПЛТ()

Функция ПЛТ() помогает высчитать сумму, которую нужно платить периодически для погашения ссуды с учетом процентных переплат за один расчетный период. Предполагается, что объем платежей и ставка не меняются.

У функции 3 обязательных аргумента и 2 – необязательных. Разберемся со всеми по порядку.

Ставка – процент, на который возрастает сумма платежа за один период.

Кпер – количество выплат или периодов.

Пс – общая сумма, которую нужно выплатить.

БС – показывает, сколько останется выплатить после последней выплаты. По умолчанию подразумевается 0 (то есть после последней выплаты стоимость ссуды составит 0 руб.).

Тип – аргумент, который принимает значения: 0 – когда платежи совершаются в конце периода, 1 – если в начале.

Рассмотрим пример.

Нужно рассчитать ежемесячный платеж по кредиту в размере 500 000 руб., взятого на 4 года под 6% годовых:

Рис.3. Применение функции ПЛТ()

Так как в условиях задачи была дана процентная ставка за год, то, чтобы рассчитать ставку за один месяц, мы разделили 6% на 12 месяцев.

Так как выплаты производятся каждый месяц, то количество периодов рассчитываем так: 4 * 12 = 48:

Рис.4. Результат функции ПЛТ()

Обратим внимание на то, то результат получился отрицательным. Знак «-» показывает, что эту сумму нужно отдать (вычесть из задолженности).

3. Формула ПС()

Формулу ПС() необходима для нахождения приведенной стоимости (то есть общей суммы, которую нужно выплатить на текущий момент).

Её можно назвать обратной к предыдущему оператору ПЛТ(). У неё точно такие же аргументы, только вместо «Пс» – «Плт» – сумма периодической выплаты.

Функция записывается следующим образом:

ПС(Ставка; Кпер; Плт; Бс; Тип)

Рассмотрим пример:

Рис.5. Применение функции ПС()
Рис.6. Результат функции ПС()

Мы получили сумму, которую в итоге заплатил бы человек, взявший кредит под 6% годовых на 4 года с ежемесячными выплатами в размере 12 000 руб.

4. Формула ОСПЛТ()

Данная формула в качестве результата выводит основную часть выплат по кредиту за заданный период (то есть ту часть платежа, которая уходит на оплату именно ссуды, а не процентов).

При этом учитывается, что параметры Ставка и размер выплат не меняются.

У функции ОСПЛТ() такие же аргументы, как и предыдущая формула: Ставка, Кпер, Пс, БС, Тип.

Еще добавляется Период (обязательный аргумент) – число от 1 до Кпер.

Посмотрим результат функции на предыдущем примере. Нужно рассчитать, сколько денег от первого платежа идет на погашение ссуды, не учитывая оплату процентов:

Рис.7. Применение функции ОСПЛТ()
Рис.8. Результат функции ОСПЛТ()

Мы видим, что основная часть первого платежа равна 9 242,51 руб – это примерно 79% от ежемесячной выплаты.

Если посмотреть результат формулы за 48-ой период, то получим уже 11 684,1 – это 99,5%. Заметная разница говорит о том, что процентные начисления в большей степени выплачиваются в первые расчетные периоды.


КУРС

EXCEL ACADEMY

Научитесь использовать все прикладные инструменты из функционала MS Excel.

5. Формулы ПРПЛТ(), ОБЩПЛАТ()

Функция очень похожа на ОСПЛТ() с небольшой оговоркой: она помогает высчитать размер выплат по процентам за выбранный период, предполагая неизменяемыми размер платежей и ставку.

У функция ПРПЛТ() точно такие же аргументы, как и у ОСПЛТ(), и выглядит в строке ввода формул так:

ПРПЛТ(Ставка; Период; Кпер; Пс; БС; Тип)

Применим формулу к нашему примеру:

Рис.9. Применение функции ПРПЛТ()
Рис.10. Результат функции ПРПЛТ()

Получили, что за первый период сумма выплат по процентам составит 2 500 руб., а в 48 месяце – всего 58,4 руб.

То есть данная формула еще раз подтверждает факт, что большая часть выплат по процентам осуществляется в начальные периоды платежей.

Замечание. Чтобы рассчитать, какая сумма из ваших платежей ушла на оплату процентов между любыми периодами, нужно использовать формулу:

ОБЩПЛАТ(Ставка;Кпер; Пс; Нач_пер;Кон_пер)

Ниже представлен пример применения функции ОБЩПЛАТ(), где в качестве Нач_пер берем первый период и Кон_пер – второй.

Выплаты происходят в конце месяца:

Рис.11. Применение функции ОБЩПЛАТ()

С помощью этих формул даже рядовой пользователь сможет рассчитать самые выгодные условия кредитования!

6. Формула СТАВКА()

Мы уже узнали, как считать объем ежемесячных выплат, процентные переплаты, число будущих выплат и так далее. Помимо этих действий в Excel можно вычислить ставку по кредиту, используя одноименную функцию СТАВКА().

В качестве аргументов выступают хорошо известные нам критерии: Кпер, Плт, Пс, Бс, Тип.

Два последних аргумента – необязательные:

Рис.12. Применение функции СТАВКА()
Рис.13. Результат функции СТАВКА()

7. Формула БС()

Теперь поговорим о функции БС() – высчитывает стоимость инвестиций после определенного количества периодов при условии неизменной ставки.

Формула записывается следующим образом:

БС(Ставка; Кпер; Плт; Пс; Тип).

Здесь аргумент Пс является необязательным.

Рассмотрим пример:

Пусть 12% – годовая ставка, количество платежей – 12, каждая выплата – 1 000 руб. (знаком минус покажем, что эти деньги нужно отдавать).

Посчитаем стоимость инвестиций при таких условиях:

Рис.14. Применение функции БС()
Рис.15. Результат функции БС()

Отметим, что «сумму выплат» мы специально сделали отрицательной, чтобы показать, что эти деньги вычитаются, и что сумма инвестиций не может быть отрицательной.

Заключение

Мы с вами проделали большую работу и познакомились с базовыми финансовыми формулами, которые могут применять не только специалисты в узкой области, но и простые пользователи Excel.


КУРС

EXCEL ACADEMY

Научитесь использовать все прикладные инструменты из функционала MS Excel.

Блог SF Education

Investment Banking

Как работает сотрудник одной из компаний «большой тройки»?

Ты работаешь в компании «большой тройки (имеются в виду три крупнейших консалтинговых компании: McKinsey, Boston Consulting Group и Bain & Company), в которых мечтают работать тысячи подписчиков наших каналов и читателей vc.ru. Что это значит для тебя?

12 необходимых для работы с данными математических функций в Excel

Содержание статьи Microsoft Excel– одна из самых популярных и легкодоступных программ для представителей разный специальностей. Сегодня мы рассмотрим, пожалуй, одну из самых используемых групп…

Like this post? Please share to your friends:
  • Excel план факт отчет
  • Excel план работы отдела
  • Excel план работы на год
  • Excel план выполнения работы
  • Excel пишу число выдает дату