Эконометрика в excel купить

Укажите регион, чтобы мы точнее рассчитали условия доставки

Начните вводить название города, страны, индекс, а мы подскажем

Например: 
Москва,
Санкт-Петербург,
Новосибирск,
Екатеринбург,
Нижний Новгород,
Краснодар,
Челябинск,
Кемерово,
Тюмень,
Красноярск,
Казань,
Пермь,
Ростов-на-Дону,
Самара,
Омск

  • Книги
  • Книги по экономике
  • Владимир Борисович Яковлев

  • 📚 Эконометрика в Excel и Statistica. (Бакалавриат). Учебное пособие. читать книгу

Читайте только на ЛитРес!

Как читать книгу после покупки

  • Чтение только в Литрес «Читай!»

По вашей ссылке друзья получат скидку 10% на эту книгу, а вы будете получать 10% от стоимости их покупок на свой счет ЛитРес. Подробнее

Стоимость книги: 1400 
Ваш доход с одной покупки друга: 140 

Чтобы посоветовать книгу друзьям, необходимо войти или зарегистрироваться

  • Объем: 380 стр.
  • Жанр: книги по экономикеРедактировать

Эта и ещё 2 книги за 399 

По абонементу вы каждый месяц можете взять из каталога одну книгу до 700 ₽ и две книги из специальной подборки. Узнать больше

Оплачивая абонемент, я принимаю условия оплаты и её автоматического продления, указанные в оферте

Описание книги

Изложены основные методы регрессионного анализа (парная и множественная регрессия) и анализа временных рядов (автокорреляция уровней временных рядов, сглаживание временных рядов, аналитическое выравнивание временных рядов, сезонная декомпозиция

временных рядов, изучение взаимосвязей по временным рядам), приведены соответствующие расчетные формулы, раскрыт содержательный смысл эконометрических показателей. Подробно, вплоть до пошаговых инструкций, описаны способы решения задач в табличном

процессоре Microsoft Excel 2016 и статистическом пакете Statistica 10.

Соответствует ФГОС ВО последнего поколения.

Для студентов бакалавриата, обучающихся по направлению «Бизнес-информатика».

Подробная информация

Возрастное ограничение:
0+
Дата выхода на ЛитРес:
26 февраля 2022
Дата написания:
2022
Объем:
380 стр.
ISBN:
9785406098851
Общий размер:
93 MB
Общее кол-во страниц:
380
Размер страницы:
140 x 205 мм
Правообладатель:
КноРус

«Эконометрика в Excel и Statistica. (Бакалавриат). Учебное пособие.» — читать онлайн бесплатно фрагмент книги. Оставляйте комментарии и отзывы, голосуйте за понравившиеся.

Оставьте отзыв

Другие книги автора

На что хотите пожаловаться?

Сообщение отправлено

Мы получили Ваше сообщение.
Наши модераторы проверят книгу
в ближайшее время.
Спасибо, что помогаете нам.

Сообщение уже отправлено

Мы уже получили Ваше сообщение.
Наши модераторы проверят книгу
в ближайшее время.
Спасибо, что помогаете нам.

Поделиться отзывом на книгу

Эконометрика в Excel и Statistica. (Бакалавриат). Учебное пособие.

Владимир Борисович Яковлев

Эконометрика в Excel и Statistica. (Бакалавриат). Учебное пособие.PDF

Учебник включает темы современной эконометрики, часто применяемые в экономических исследованиях. Рассматриваются некоторые аспекты моделей множественной регрессии, связанные с проблемой мультиколлинеарности, модели с дискретной зависимой переменной, включая методы их оценивания, анализа и применения. Значительное место отводится анализу моделей одномерных и многомерных временных рядов. Рассмотрены современные представления о детерминированном и стохастическом характере тренда. Изучены методы статистической идентификации типа тренда. Уделяется внимание оценке, анализу и практической реализации моделей стационарных временных рядов Бокса — Дженкинса, а также моделей многомерных временных рядов: векторных авторегрессионных моделей и векторных моделей коррекции ошибок. Включены основные эконометрические модели для панельных данных, широко применяемые в последние десятилетия, а также формальные тесты выбора моделей с учетом их иерархической структуры. В каждом разделе приводятся примеры оценки, анализа и тестирования моделей в программной среде R.
Соответствует требованиям федеральных государственных образовательных стандартов высшего образования последнего поколения.
Адресован студентам магистратуры, обучающимся по направлению «Экономика», учебный план которого предусматривает дисциплины «Эконометрика (продвинутый курс)», «Эконометрическое моделирование», «Эконометрические исследования», и аспирантам.

Фрагмент текстового слоя документа размещен для индексирующих роботов.
Для полноценной работы с документом, пожалуйста, перейдите в
ридер.

ЭКОНОМЕТРИКА 

И ЭКОНОМЕТРИЧЕСКОЕ 

МОДЕЛИРОВАНИЕ

В EXCEL И R

Л.О.  БАБЕШКО
И.В. ОРЛОВА

Москва
ИНФРА-М

202-
УЧЕБНИК

Рекомендовано Межрегиональным учебно-методическим советом 

профессионального образования в качестве учебника для студентов 

высших учебных заведений, обучающихся  по направлениям подготовки 
38.04.00 «Экономика и управление»  (квалификация (степень) «магистр») 

(протокол № 8 от 22.06.2020)
УДК 519.862(075.8)
ББК 65в6я73
 
Б12

А в т о р ы:

Л.О. Бабешко, доктор экономических наук, профессор (гл. 3–9);
И.В. Орлова, кандидат экономических наук, профессор (гл. 1—2)

Р е ц е н з е н т ы:

Н.Б. Кобелев, доктор экономических наук, член правления Нацио нального 

общества имитационного моделирования (НОИМ), президент Ремесленной 
палаты России;

А.С. Сенин, доктор экономических наук, декан факультета маркетинга 

и международного сотрудничества Института управления и регио нального 
развития Российской академии народного хозяйства и государственной служ-
бы при Президенте Российской Федерации

ISBN 978-5-16-016059-7 (print)
ISBN 978-5-16-109181-4 (online)
© Бабешко Л.О., Орлова И.В., 2020

Бабешко Л.О.

Б12  
Эконометрика и эконометрическое моделирование в Excel и R : 

учебник / Л.О. Бабешко, И.В. Орлова. — Москва : ИНФРА-М, 2023. — 
300 с. : ил. — (Высшее образование : Магистратура). — DOI 10.12737/
1079837.

ISBN 978-5-16-016059-7 (print)
ISBN 978-5-16-109181-4 (online)
Учебник включает темы современной эконометрики, часто применяемые 

в экономических исследованиях. Рассматриваются некоторые аспекты моде-
лей множественной регрессии, связанные с проблемой мультиколлинеарности, 
модели с дискретной зависимой переменной, включая методы их оценивания, 
анализа и применения. Значительное место отводится анализу моделей одно-
мерных и многомерных временных рядов. Рассмотрены современные представ-
ления о детерминированном и стохастическом характере тренда. Изучены ме-
тоды статистической идентификации типа тренда. Уделяется внимание оценке, 
анализу и практической реализации моделей стационарных временных рядов 
Бокса — Дженкинса, а также моделей многомерных временных рядов: век-
торных авторегрессионных моделей и векторных моделей коррекции ошибок. 
Включены основные эконометрические модели для панельных данных, широ-
ко применяемые в последние десятилетия, а также формальные тесты выбора 
моделей с учетом их иерархической структуры. В каждом разделе приводятся 
примеры оценки, анализа и тестирования моделей в программной среде R.

Соответствует требованиям федеральных государственных образователь-

ных стандартов высшего образования последнего поколения.

Адресован студентам магистратуры, обучающимся по направлению «Эконо-

мика», учебный план которого предусматривает дисциплины «Эконометрика 
(продвинутый курс)», «Эконометрическое моделирование», «Эконометриче-
ские исследования», и аспирантам. 

УДК 519.862(075.8)

ББК 65в6я73

Данная книга доступна в цветном исполнении 
в электронно-библиотечной системе Znanium
Введение 

Основная задача эконометрики — построение эконометрических 
моделей и их применение для количественной оценки, анализа 
и прогнозирования экономических процессов. 
Эконометрические модели классифицируют по разным основа-
ниям. Одним из них являются типы данных, которые используются 
при построении указанных моделей. 
Для данных по разным экономическим объектам в один и тот же 
момент времени (пространственным данным, cross-sectional data) 
строят модели множественной регрессии. 
Для описания эндогенных переменных с дискретными значе-
ниями применяются модели бинарного и множественного выбора.
 Если данные относятся к одному экономическому объекту за 
исследуемый период времени (данные временного ряда, time-series 
data) — эконометрический аппарат — модели временных рядов. 
Отличительной особенностью панельных данных (panel data) 
является то, что они включают пространственные данные и данные 
временных рядов, по это му не только  содержат информацию о раз-
витии объектов во времени, но и служат базой для выявления раз-
личий между исследуемыми объектами в рамках специальных мо-
делей — моделей для панельных данных.
Учебники, посвященные многообразию быстро развивающе-
гося эконометрического инструментария, традиционно делят 
на вводные учебники эконометрики для бакалавриата, включающие 
модели линейной и нелинейной регрессии, модели с фиктивными 
и лаговыми переменными, модели временных рядов, модели систем 
одновременных уравнений, и учебники продвинутого курса для ма-
гистратуры, охватывающие широкий круг тем по моделям с дис-
кретными зависимыми переменными, анализу временных рядов, 
проблеме коинтеграции, многомерным моделям временных рядов, 
моделям для панельных данных. 
Глава 1 посвящена вопросам применения моделей множе-
ственной регрессии, не вошедшим в изданный в 2018 г. учебник 
«Эконометрика и эконометрическое моделирование» авторов 
Л.О. Бабешко, М.Г. Бича, И.В. Орловой.
Предполагается, что читатель знаком с основами эконометрики 
и владеет начальными навыками работы в среде R.
Предварительный анализ данных является необходимым этапом 
при построении эконометрических моделей, так как качество мо-
дели регрессии может в значительной мере зависеть от характера 
наблюдений, пропущенных наблюдений или наличия выбросов. 
В главе 1 рассмотрены методы выявления необычных наблюдений 
и возможности программы R для решения задачи обнаружения 
влиятельных наблюдений и выбросов при построении модели ли-
нейной регрессии. Здесь же изучен вопрос использования модели 
регрессии для ранжирования факторов по степени их влияния 
на результирующую переменную. Большая часть главы отведена 
изложению современных подходов к решению проблемы мульти-
коллинеарности. 
В главе 2 рассмотрены модели с дискретной зависимой пере-
менной, изложен метод оценки параметров модели бинарного вы-
бора, приведены и описаны показатели качества логистической ре-
грессии, проиллюстрированы возможности программной среды R 
для построения моделей бинарного выбора и визуализации их ка-
чества. 
Главы 3—8 посвящены моделям временных рядов, изложены 
современные представления о детерминированном и стохасти-
ческом характере тренда, описаны методы оценки тренд-стацио-
нарных (trend-stationary, TS) и разностно-стационарных (difference-
stationary, DS) моделей временных рядов и их реализация в про-
граммной среде R. 
В главе 6 описаны методы статистической идентификации типа 
тренда. В главу включены тесты: Дикки — Фуллера (Diskey — Fuller, 
DF-тест — о наличии авторегрессии первого порядка, ADF-тест — 
о наличии авторегрессии более высоких порядков), Филлипса — 
Перрона (Phillips — Perron, PP-тест, учитывающий возможность гете-
роскедастичности и автокорреляции ошибок, а также возможность 
их распределения не по нормальному закону), Квятковского — 
Филлипса — Шмидта — Шина (Kwiatkowski, Phillips, Schmidt, Shin, 
KPSS-тест — с нулевой гипотезой о тренд-стационарности времен-
ного ряда), Дикки — Пентала (DP-тест — с расширением на случай 
нескольких единичных корней). Здесь же приведены скрипты при-
меров тестирования в программной среде R с описанием функций, 
предназначенных для расчета тестовых статистик.  
Глава 7 посвящена моделям стационарных временных рядов 
Бокса — Дженкинса, современным методам их оценивания, анализа 
и реализации в программной среде R. 
В главе 8 описаны многомерные модели временных рядов: 
векторные авторегрессионные модели в приведенной (vector 
autoregressive model, VAR) и структурной формах (structural vector 
autoregressive model, SVAR), предложенные Кристофером Симсом 
(Sims) в 1980 г. и предназначенные для описания нескольких ди-
намических процессов на основе их общей истории; процессы по-
строения функций импульсного отклика и декомпозиции ошибок 
прогнозов в рамках моделей VAR; векторные модели коррекции 
ошибок (vector error-correction model, VECM), применяемые для не-
стационарных временных рядов (интегрированных или коинтег-
рированных). В главу включены тесты на коинтеграцию (Энгла — 
Грейнджера (Engle — Granger) и Йохансена (Johansen)), а также 
скрипты примеров тестирования в программной среде R с описа-
нием функций, предназначенных для расчета тестовых статистик.  
Модели для панельных данных, широко применяемые в по-
следние десятилетия, описаны в главе 9. Здесь рассмотрены ос-
новные эконометрические модели для панельных данных: объ-
единенная модель (Pooled model, Pool — спецификация, которая 
не учитывает индивидуальные особенности объектов), модель 
с фиксированными эффектами (fixed effect model, FE — гетеро-
генность объектов учитывается посредством индивидуальных па-
раметров местоположения), модель со случайными эффектами 
(random effect model, RE —  гетерогенность объектов учитывается 
независящей от времени специфической составляющей ошибки). 
В главу включены формальные тесты выбора моделей, адекватных 
выборочным данным, учитывающие их иерархическую структуру. 
Приведены примеры оценки, анализа и тестирования моделей 
для панельных данных в программной среде R.
В качестве программной среды для оценки и исследования эко-
нометрических моделей выбран язык R, нашедший широкое приме-
нение при решении базовых задач высшей математики студентами 
общеэкономических специальностей ведущих университетов.
В заключение каждой главы приводятся вопросы для самокон-
троля, задачи и упражнения.
В результате освоения материала студенты должны:
 
• знать фундаментальные основы современных методов эконо-
метрических исследований, их возможности и ограничения;
 
• уметь выбирать эконометрические методы и модели для оценки 
и прогнозирования конкретных социально-экономических пока-
зателей на микро-, мезо- и макроуровнях для принятия долго-
срочных и краткосрочных решений; правильно интерпретиро-
вать и анализировать результаты эконометрического исследо-
вания;
 
• владеть навыками проведения эконометрических исследований 
с использованием современных пакетов прикладных программ 
и оформления результатов.
Глава 1. 
НЕКОТОРЫЕ АСПЕКТЫ ПРИМЕНЕНИЯ МОДЕЛИ 
МНОЖЕСТВЕННОЙ РЕГРЕССИИ

1.1. ПРЕДВАРИТЕЛЬНЫЙ АНАЛИЗ ДАННЫХ. 
ОБНАРУЖЕНИЕ ВЛИЯТЕЛЬНЫХ НАБЛЮДЕНИЙ
 И ВЫБРОСОВ

Модель линейной множественной регрессии имеет вид: 

 
=
+ ε
Y
Xb
, 
(1.1)

где Y — n-мерный вектор значений зависимой переменной, 

1
2
(
,
, ...,
)
Т
n
Y
y
y
y
=
; b — p-мерный вектор коэффициентов ре-
грессии, 
0
1
(
,
, ...,
)
Т
k
b
b
b
b
=
, p = k + 1; k — количество регрессоров; 
ε — n-мерный вектор остатков; X — (n
p
×
) —матрица значений ре-
грессоров; xij — значение j-го регрессора Xj в i-м наблюдении, 
i = 1, …, n, j = 1, …, k; первый столбец матрицы X состоит из единиц, 
i-я строка хi  матрицы X содержит значения регрессоров X1, …, Xk 
в i-м наблюдении.
При построении регрессионных моделей наборы данных 
иногда содержат необычные наблюдения, такие как аномальные 
наблюдения в пространстве экзогенных переменных, наблю-
дения с большими по модулю значениями остатков от регрессии 
(выбросы), которые могут вносить большой вклад в оценки 
параметров регрессии и создают препятствия для применения 
аппарата проверки статистических гипотез. Такие наблюдения 
должны быть диагностированы, чтобы установить, оказывают 
ли они на самом деле значительное влияние на качество модели 
регрессии.
Обнаружение, идентификация и обработка необычных наблю-
дений является важным этапом построения модели, хотя и не яв-
ляется стандартной рабочей процедурой.
Необычные наблюдения можно классифицировать следующим 
образом.
 
• Точки разбалансировки (leverage). Наблюдения, которые 
в пространстве экзогенных переменных находятся далеко 
от центра распределения наблюдений, координаты которого 
равны средним значениям этих переменных. Чем дальше 
от центра системы находится наблюдение, тем больше его 
влияние на оценку коэффициентов регрессии. Такие наблю-
дения называют точками разбалансировки. Они выявляются с по-
мощью показателя воздействия наблюдения, или разбаланси-
ровки (leverage) hii. Показатель hii является i-м диаго нальным эле-
ментом матрицы H, где 
1
(
)
.
T
T
H
X X X
X
−
=
 Для пояснения смысла 
матрицы Н напомним, что вектор МНК1-оценок регрессионных 
коэффициентов bˆ модели (1.1) равен 
1
ˆ
(
)
T
T
b
X X
X Y
−
=
 [5], 
откуда предсказываемые моделью значения эндогенной пере-
менной можно записать следующим образом: 
ˆ
ˆY
Xb
=
=

1
(
)
T
T
X X X
X Y
H Y
−
=
=
⋅
, т.е. ˆY
H Y
=
⋅
 или в координатной форме 

1 1
2
21
ˆ
...
...
i
i
i
ii
i
in
n
Y
h Y
h Y
h Y
h Y
=
+
+
+
+
+
, i = 1, …, n. 
Диаго нальные элемен ты матрицы H изменяются от нуля до еди-
ницы и в сумме равны числу параметров модели p. Показатель hii 
отражает расстояние между точкой с координатами хi и центром 
данных. Если значение hii близко к нулю, то это означает, что i-я 
точка хi располагается недалеко от центра, если hii близка к единице, 
то i-я точка является удаленной. Считается, что наблюдение оказы-
вает существенное влияние на параметры модели, если hii > 2p/n. 
Показатель hii является удобным индикатором того, является ли i-е 
наблюдение точкой разбалансировки.
 
• Выбросы (outlier). Выбросами называют наблюдения, для ко-
торых отклонения от регрессии принимают аномально большие 
по модулю значения.  Наличие выбросов приводит к значи-
тельным изменениям прогнозируемых значений эндогенной пе-
ременной.  Методы выявления выбросов при построении регрес-
сионных моделей основаны на анализе остатков. 
Для диагностики выбросов в R в моделях линейной регрессии 
кроме остатков (residuals) 
ˆ
ˆi
i
i
Y
Y
ε =
−
 используются еще два типа 
остатков:
1) стандартизованные остатки (standardized residuals) 

ˆ

1

i
i
ii

rs
s
h
ε

ε
=
−

; 

2) стьюдентизированные остатки (studentized residuals), 
внешний стьюдентизированный остаток (Externally studentized 
residual) или стьюдентизированный удаленный остаток (Studentized 
deleted residual):

1 
 МНК — метод наименьших  квадратов.
(
)

ˆ
,
1

i
i
i
ii

rt
s
h
ε −

ε
=
−

 

где  

2ˆ

1

i
s
n
k
ε
ε
=
−
−
∑
  — стандартная ошибка модели; 
(
)i
sε −  — стан-

дартная ошибка модели без i-го наблюдения.
Стандартизованные остатки rsi должны асимптотически подчи-
няться стандартному нормальному закону N(0, 1). Тогда подозри-
тельными на выброс являются Yi, для которых 
i
rs  > 2, и очевидными 
выбросами являются Yi, для которых rsi  > 3. Выявление выбросов 
только с помощью стандартизированных остатков не всегда по-
зволяет определить их с уверенностью, даже если они очевидным 
образом видны на графике остатков, особенно если выброс отно-
сится к наблюдению, расположенному близко к центру распреде-
ления независимых переменных. Поэтому величины rsi можно ис-
пользовать лишь в качестве ориентировочных указателей на воз-
можные выбросы. Однако если построить модель с удаленным i-м 
наблюдением, то в случае наличия выброса она будет сильно отли-
чаться от модели, построенной по всем наблюдениям. На этом 
основан анализ с помощью стьюдентизированных остатков модели. 
Значение стандартизированного остатка может быть близким к до-
верительной границе, но не переходить ее, в то время как значение 
стьюдентизированного остатка будет выше порогового.
 Стьюдентизированные остатки имеют t-распределение с n − p сте-
пенями свободы. Соответственно мы можем использовать квантили 
этого распределения, чтобы проверить, насколько статистически зна-
чимо определенное наблюдение, которое является выбросом. 
 
•  Влиятельные наблюдения (influential point). Влиятельными 
будем называть наблюдения, которые оказывают значительное 
влияние на оценки параметров модели и ее статистические ха-
рактеристики. Удаление влиятельных наблюдений существенно 
изменяет   предсказательные свойства модели. Поэтому необхо-
димо уметь выявлять эти наблюдения и пытаться нивелировать 
их влияние на оценки регрессии. Влиятельные наблюдения, 
как правило, сочетают в себе свойства точек разбалансировки 
(leverage point) и выбросов (outlier), но могут относиться к од-
ному из указанных типов. 
Выявление необычных наблюдений рассмотрим в примере 1.1 
[19]. 
Пример 1.1. На основе информации, приведенной в табл. 1.1, 
требуется оценить параметры линейной модели парной регрессии 
Таблица 1.1

Данные о количестве выпущенных изделий и затратах

1
2
3
4
5
6
7
8
9

Количество изделий — X
22.00
30.00
26.00
31.00
36.00
30.00
22.00
45.00
38.00

Затраты, долл. — Y
3470.00
3783.00
3856.00
3910.00
4489.00
3876.00
3221.00
4579.00
4325.00

10
11
12
13
14
15
16
17
18
19

3.00
30.00
38.00
41.00
27.00
28.00
31.00
37.00
32.00
59.00

14 131.00
3589.00
3999.00
4158.00
3666.00
3885.00
3574.00
4495.00
3814.00
6000.00
зависимости затрат от количества выпущенных изделий, проана-
лизировать наличие точек разбалансировки и выбросов и оценить 
их влияние на качество модели.
На рис. 1.1 приведена диаграмма рассеяния (корреляционное 
поле) переменных X и Y. Можно предположить, что зеленая 
и крас ная точки, соответствующие наблюдениям 10 и 19, являются 
аномальными, необычными. 

16000,00

14000,00

12000,00

10000,00

8000,00

6000,00

4000,00

2000,00

0,00

X

Y

0,00
10,00 20,00 30,00 40,00 50,00 60,00 70,00

Рис. 1.1. Диаграмма рассеяния

Показатель воздействия наблюдения или разбалансировки 
(leverage). В качестве показателя воздействия i-го наблюдения 
на предсказанное значение ˆ выбираем показатель разбаланси-
ровки hii. В соответствии с вышесказанным в качестве критиче-
ского значения для показателя разбалансировки hii выбираем 
число 2р/n = 2 · 2/19 = 0,21. Наблюдение считаем точкой разба-
лансировки, если hii > 0,21. Не все наблюдения, которые можно 
отнести к классу точек разбалансировки, являются влиятель-
ными.
Решение в программе Excel.  Матрицу 
1
(
)
T
T
H
X X X
X
−
=
  в Excel 
можно получить, последовательно применяя функции МУМНОЖ, 
МОБР, МУМНОЖ, МУМНОЖ к матрицам Х и транспониро-
ванная Х. Показатель воздействия наблюдения hii является диаго-
нальным элементом матрицы H (рис. 1.2).
Решение в R. Построение уравнения регрессии (рис. 1.3).
Получено уравнение регрессии ˆ
iY  = 7513,02 – 92,29Х, все коэф-
фициенты которого значимы.
Эконометрика в Excel: парные и множественные регрессионные модели: Уч. пособие — 2553012 — 1


ID товара

2553012


Издательство

Лань


Год издания

2016


ISBN

978-5-8114-2318-7


Количество страниц

260


Размер

20.7×13.5×1.5


Тип обложки

Твердый переплёт


Вес, г

310

Построение эконометрических моделей обуславливает (особенно при большом объеме исходных данных) существенный объем вычислений. На этом этапе многие исследователи сталкиваются с проблемами численной реализации необходимого вычислительного алгоритма той или иной задачи эконометрики и графической интерпретации результатов решения. Этой стороне эконометрики в учебной литературе уделяется крайне мало внимания, что затрудняет использования современных алгоритмов решения эконометрических задач на практике.
.Поэтому основной целью данного пособия является изложение численных методик решения основных задач эконометрики в вычислительной среде табличного процессора Excel XP.
.Для каждой из рассматриваемых задач эконометрики приводится необходимый теоретический материал, математическая запись алгоритма решения (т. е. формулы или расчетные соотношения), а затем даются фрагменты документов Excel XP, реализующих алгоритмы решения задачи.
.При этом алгоритм решения может быть реализован путем программирования арифметических или логических выражений в ячейках электронной таблицы или путем обращения к «стандартным» функциям или модулям Excel XP. Поэтому предполагается, что читатель знаком с адресацией ячеек (относительной, абсолютной и смешанной), арифметическими операциями и программированием простейших выражений в ячейках Excel.

Построение эконометрических моделей обуславливает (особенно при большом объеме исходных данных) существенный объем вычислений. На этом этапе многие исследователи сталкиваются с проблемами численной реализации необходимого вычислительного алгоритма той или иной задачи эконометрики и графической интерпретации результатов решения. Этой стороне эконометрики в учебной литературе уделяется крайне мало внимания, что затрудняет использования современных алгоритмов решения эконометрических задач на практике.
.Поэтому основной целью данного пособия является изложение численных методик решения основных задач эконометрики в вычислительной среде табличного процессора Excel XP.
.Для каждой из рассматриваемых задач эконометрики приводится необходимый теоретический материал, математическая запись алгоритма решения (т. е. формулы или расчетные соотношения), а затем даются фрагменты документов Excel XP, реализующих алгоритмы решения задачи.
.При этом алгоритм решения может быть реализован путем программирования арифметических или логических выражений в ячейках электронной таблицы или путем обращения к «стандартным» функциям или модулям Excel XP. Поэтому предполагается, что читатель знаком с адресацией ячеек (относительной, абсолютной и смешанной), арифметическими операциями и программированием простейших выражений в ячейках Excel.


Лань

На товар пока нет отзывов

Поделитесь своим мнением раньше всех

Как получить бонусы за отзыв о товаре

1


Сделайте заказ в интернет-магазине

2


Напишите развёрнутый отзыв от 300 символов только на то, что вы купили

3


Дождитесь, пока отзыв опубликуют.

Если он окажется среди первых десяти, вы получите 30 бонусов на Карту Любимого Покупателя. Можно писать
неограниченное количество отзывов к разным покупкам – мы начислим бонусы за каждый, опубликованный в
первой десятке.

Правила начисления бонусов

Если он окажется среди первых десяти, вы получите 30 бонусов на Карту Любимого Покупателя. Можно писать
неограниченное количество отзывов к разным покупкам – мы начислим бонусы за каждый, опубликованный в
первой десятке.

Правила начисления бонусов

Книга «Эконометрика в Excel: парные и множественные регрессионные модели: Уч. пособие» есть в наличии в интернет-магазине «Читай-город» по привлекательной цене.
Если вы находитесь в Москве, Санкт-Петербурге, Нижнем Новгороде, Казани, Екатеринбурге, Ростове-на-Дону или любом
другом регионе России, вы можете оформить заказ на книгу

«Эконометрика в Excel: парные и множественные регрессионные модели: Уч. пособие» и выбрать удобный способ его получения: самовывоз, доставка курьером или отправка
почтой. Чтобы покупать книги вам было ещё приятнее, мы регулярно проводим акции и конкурсы.

код 651436

Год издания: 2022 г.

ISBN:
978-5-406-09885-1

Гриф:
Рекомендовано Экспертным советом УМО в системе ВО и СПО в качестве учебного пособия для направления бакалавриата «Бизнес-информатика»

Страниц:
382

Вид издания:
Учебное пособие

Оптовая цена:

1 400 руб.

Купить в интернет-магазине:

Изложены основные методы регрессионного анализа (парная и множественная регрессия) и анализа временных рядов (автокорреляция уровней временных рядов, сглаживание временных рядов, аналитическое выравнивание временных рядов, сезонная декомпозиция временных рядов, изучение взаимосвязей по временным рядам), приведены соответствующие расчетные формулы, раскрыт содержательный смысл эконометрических показателей. Подробно, вплоть до пошаговых инструкций, описаны способы решения задач в табличном процессоре Microsoft Excel 2016 и статистическом пакете Statistica 10.
Соответствует ФГОС ВО последнего поколения.
Для студентов бакалавриата, обучающихся по направлению «Бизнес-информатика».

Яковлев, В. Б., Эконометрика в Excel и Statistica : учебное пособие / В. Б. Яковлев.

Эконометрика. Финансовая математика

Миниатюра 1

Миниатюра 2

Курьером

Л-Пост

бесплатно от 3 000 ₽

от 99 ₽

бесплатно от 1 000 ₽

Издательство:

Лань

Учебное пособие содержит основные теоретические положения, необходимые для построения моделей временных рядов и анализа построенных моделей. Приводятся необходимые расчетные соотношения. Большое внимание уделяется реализации этих соотношений в табличном процессоре Excel. Учебное пособие содержит большое количество примеров и копий фрагментов документов Excel, которые позволят студентам не только лучше понять и усвоить учебный материал, но и эффективно использовать Excel при выполнении курсовых работ и дипломной работы.
Учебное пособие предназначено бакалаврам, обучающимся по направлениям «Экономика», «Менеджмент», а также магистрантам и аспирантам соответствующих специальностей.

ISBN

978-5-8114-3056-7, 978-5-8114-4863-0

Поделитесь своим мнением об этом товаре с другими покупателями — будьте первыми!

Дарим бонусы за отзывы!

За какие отзывы можно получить бонусы?

  • За уникальные, информативные отзывы, прошедшие модерацию

Как получить больше бонусов за отзыв?

  • Публикуйте фото или видео к отзыву
  • Пишите отзывы на товары с меткой «Бонусы за отзыв»

Правила начисления бонусов

Задайте вопрос, чтобы узнать больше о товаре

Если вы обнаружили ошибку в описании товара «Эконометрика в Excel. Модели временных рядов. Учебное пособие» (авторы: Воскобойников Юрий Евгеньевич), то выделите её мышкой и нажмите Ctrl+Enter. Спасибо, что помогаете нам стать лучше!

Ваш населённый пункт:

г. Курск, Курская обл.

Понравилась статья? Поделить с друзьями:
  • Эксель убрать пробел между цифрами в excel
  • Эксель список в одной ячейке excel
  • Эксель сага heppoko jikken animation excel saga
  • Эксель примеры сводных таблиц в excel
  • Эксель отображение листов в excel