Ecology history of the word

Ecology

Bufo boreas.jpg Blue Linckia Starfish.JPG
Hawk eating prey.jpg European honey bee extracts nectar.jpg
Ecology addresses the full scale of life, from tiny bacteria to processes that span the entire planet. Ecologists study many diverse and complex relations among species, such as predation and pollination. The diversity of life is organized into different habitats, from terrestrial to aquatic ecosystems.

Ecology (from Ancient Greek οἶκος (oîkos) ‘house’, and -λογία (-logía) ‘study of’)[A] is the study of the relationships among living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history. Ecology is a branch of biology, and it is not synonymous with environmentalism.

Among other things, ecology is the study of:

  • The abundance, biomass, and distribution of organisms in the context of the environment
  • Life processes, interactions, and adaptations
  • The movement of materials and energy through living communities
  • The successional development of ecosystems
  • Cooperation, competition, and predation within and between species
  • Patterns of biodiversity and its effect on ecosystem processes

Ecology has practical applications in conservation biology, wetland management, natural resource management (agroecology, agriculture, forestry, agroforestry, fisheries, mining, tourism), urban planning (urban ecology), community health, economics, basic and applied science, and human social interaction (human ecology).

The word ecology (German: Ökologie) was coined in 1866 by the German scientist Ernst Haeckel. The science of ecology as we know it today began with a group of American botanists in the 1890s.[1] Evolutionary concepts relating to adaptation and natural selection are cornerstones of modern ecological theory.

Ecosystems are dynamically interacting systems of organisms, the communities they make up, and the non-living (abiotic) components of their environment. Ecosystem processes, such as primary production, nutrient cycling, and niche construction, regulate the flux of energy and matter through an environment. Ecosystems have biophysical feedback mechanisms that moderate processes acting on living (biotic) and abiotic components of the planet. Ecosystems sustain life-supporting functions and provide ecosystem services like biomass production (food, fuel, fiber, and medicine), the regulation of climate, global biogeochemical cycles, water filtration, soil formation, erosion control, flood protection, and many other natural features of scientific, historical, economic, or intrinsic value.

Levels, scope, and scale of organization[edit]

The scope of ecology contains a wide array of interacting levels of organization spanning micro-level (e.g., cells) to a planetary scale (e.g., biosphere) phenomena. Ecosystems, for example, contain abiotic resources and interacting life forms (i.e., individual organisms that aggregate into populations which aggregate into distinct ecological communities). Ecosystems are dynamic, they do not always follow a linear successional path, but they are always changing, sometimes rapidly and sometimes so slowly that it can take thousands of years for ecological processes to bring about certain successional stages of a forest. An ecosystem’s area can vary greatly, from tiny to vast. A single tree is of little consequence to the classification of a forest ecosystem, but is critically relevant to organisms living in and on it.[2] Several generations of an aphid population can exist over the lifespan of a single leaf. Each of those aphids, in turn, supports diverse bacterial communities.[3] The nature of connections in ecological communities cannot be explained by knowing the details of each species in isolation, because the emergent pattern is neither revealed nor predicted until the ecosystem is studied as an integrated whole.[4] Some ecological principles, however, do exhibit collective properties where the sum of the components explain the properties of the whole, such as birth rates of a population being equal to the sum of individual births over a designated time frame.[5]

The main subdisciplines of ecology, population (or community) ecology and ecosystem ecology, exhibit a difference not only in scale but also in two contrasting paradigms in the field. The former focuses on organisms’ distribution and abundance, while the latter focuses on materials and energy fluxes.[6]

Hierarchy[edit]

System behaviors must first be arrayed into different levels of the organization. Behaviors corresponding to higher levels occur at slow rates. Conversely, lower organizational levels exhibit rapid rates. For example, individual tree leaves respond rapidly to momentary changes in light intensity, CO2 concentration, and the like. The growth of the tree responds more slowly and integrates these short-term changes.

O’Neill et al. (1986)[7]: 76 

The scale of ecological dynamics can operate like a closed system, such as aphids migrating on a single tree, while at the same time remaining open with regard to broader scale influences, such as atmosphere or climate. Hence, ecologists classify ecosystems hierarchically by analyzing data collected from finer scale units, such as vegetation associations, climate, and soil types, and integrate this information to identify emergent patterns of uniform organization and processes that operate on local to regional, landscape, and chronological scales.

To structure the study of ecology into a conceptually manageable framework, the biological world is organized into a nested hierarchy, ranging in scale from genes, to cells, to tissues, to organs, to organisms, to species, to populations, to communities, to ecosystems, to biomes, and up to the level of the biosphere.[8] This framework forms a panarchy[9] and exhibits non-linear behaviors; this means that «effect and cause are disproportionate, so that small changes to critical variables, such as the number of nitrogen fixers, can lead to disproportionate, perhaps irreversible, changes in the system properties.»[10]: 14 

Biodiversity[edit]

Biodiversity refers to the variety of life and its processes. It includes the variety of living organisms, the genetic differences among them, the communities and ecosystems in which they occur, and the ecological and evolutionary processes that keep them functioning, yet ever-changing and adapting.

Noss & Carpenter (1994)[11]: 5 

Biodiversity (an abbreviation of «biological diversity») describes the diversity of life from genes to ecosystems and spans every level of biological organization. The term has several interpretations, and there are many ways to index, measure, characterize, and represent its complex organization.[12][13][14] Biodiversity includes species diversity, ecosystem diversity, and genetic diversity and scientists are interested in the way that this diversity affects the complex ecological processes operating at and among these respective levels.[13][15][16] Biodiversity plays an important role in ecosystem services which by definition maintain and improve human quality of life.[14][17][18] Conservation priorities and management techniques require different approaches and considerations to address the full ecological scope of biodiversity. Natural capital that supports populations is critical for maintaining ecosystem services[19][20] and species migration (e.g., riverine fish runs and avian insect control) has been implicated as one mechanism by which those service losses are experienced.[21] An understanding of biodiversity has practical applications for species and ecosystem-level conservation planners as they make management recommendations to consulting firms, governments, and industry.[22]

Habitat[edit]

Biodiversity of a coral reef. Corals adapt to and modify their environment by forming calcium carbonate skeletons. This provides growing conditions for future generations and forms a habitat for many other species.[23]

The habitat of a species describes the environment over which a species is known to occur and the type of community that is formed as a result.[24] More specifically, «habitats can be defined as regions in environmental space that are composed of multiple dimensions, each representing a biotic or abiotic environmental variable; that is, any component or characteristic of the environment related directly (e.g. forage biomass and quality) or indirectly (e.g. elevation) to the use of a location by the animal.»[25]: 745  For example, a habitat might be an aquatic or terrestrial environment that can be further categorized as a montane or alpine ecosystem. Habitat shifts provide important evidence of competition in nature where one population changes relative to the habitats that most other individuals of the species occupy. For example, one population of a species of tropical lizard (Tropidurus hispidus) has a flattened body relative to the main populations that live in open savanna. The population that lives in an isolated rock outcrop hides in crevasses where its flattened body offers a selective advantage. Habitat shifts also occur in the developmental life history of amphibians, and in insects that transition from aquatic to terrestrial habitats. Biotope and habitat are sometimes used interchangeably, but the former applies to a community’s environment, whereas the latter applies to a species’ environment.[24][26][27]

Niche[edit]

Termite mounds with varied heights of chimneys regulate gas exchange, temperature and other environmental parameters that are needed to sustain the internal physiology of the entire colony.[28][29]

Definitions of the niche date back to 1917,[30] but G. Evelyn Hutchinson made conceptual advances in 1957[31][32] by introducing a widely adopted definition: «the set of biotic and abiotic conditions in which a species is able to persist and maintain stable population sizes.»[30]: 519  The ecological niche is a central concept in the ecology of organisms and is sub-divided into the fundamental and the realized niche. The fundamental niche is the set of environmental conditions under which a species is able to persist. The realized niche is the set of environmental plus ecological conditions under which a species persists.[30][32][33] The Hutchinsonian niche is defined more technically as a «Euclidean hyperspace whose dimensions are defined as environmental variables and whose size is a function of the number of values that the environmental values may assume for which an organism has positive fitness[34]: 71 

Biogeographical patterns and range distributions are explained or predicted through knowledge of a species’ traits and niche requirements.[35] Species have functional traits that are uniquely adapted to the ecological niche. A trait is a measurable property, phenotype, or characteristic of an organism that may influence its survival. Genes play an important role in the interplay of development and environmental expression of traits.[36] Resident species evolve traits that are fitted to the selection pressures of their local environment. This tends to afford them a competitive advantage and discourages similarly adapted species from having an overlapping geographic range. The competitive exclusion principle states that two species cannot coexist indefinitely by living off the same limiting resource; one will always out-compete the other. When similarly adapted species overlap geographically, closer inspection reveals subtle ecological differences in their habitat or dietary requirements.[37] Some models and empirical studies, however, suggest that disturbances can stabilize the co-evolution and shared niche occupancy of similar species inhabiting species-rich communities.[38] The habitat plus the niche is called the ecotope, which is defined as the full range of environmental and biological variables affecting an entire species.[24]

Niche construction[edit]

Organisms are subject to environmental pressures, but they also modify their habitats. The regulatory feedback between organisms and their environment can affect conditions from local (e.g., a beaver pond) to global scales, over time and even after death, such as decaying logs or silica skeleton deposits from marine organisms.[39] The process and concept of ecosystem engineering are related to niche construction, but the former relates only to the physical modifications of the habitat whereas the latter also considers the evolutionary implications of physical changes to the environment and the feedback this causes on the process of natural selection. Ecosystem engineers are defined as: «organisms that directly or indirectly modulate the availability of resources to other species, by causing physical state changes in biotic or abiotic materials. In so doing they modify, maintain and create habitats.»[40]: 373 

The ecosystem engineering concept has stimulated a new appreciation for the influence that organisms have on the ecosystem and evolutionary process. The term «niche construction» is more often used in reference to the under-appreciated feedback mechanisms of natural selection imparting forces on the abiotic niche.[28][41] An example of natural selection through ecosystem engineering occurs in the nests of social insects, including ants, bees, wasps, and termites. There is an emergent homeostasis or homeorhesis in the structure of the nest that regulates, maintains and defends the physiology of the entire colony. Termite mounds, for example, maintain a constant internal temperature through the design of air-conditioning chimneys. The structure of the nests themselves is subject to the forces of natural selection. Moreover, a nest can survive over successive generations, so that progeny inherit both genetic material and a legacy niche that was constructed before their time.[5][28][29]

Biome[edit]

Biomes are larger units of organization that categorize regions of the Earth’s ecosystems, mainly according to the structure and composition of vegetation.[42] There are different methods to define the continental boundaries of biomes dominated by different functional types of vegetative communities that are limited in distribution by climate, precipitation, weather, and other environmental variables. Biomes include tropical rainforest, temperate broadleaf and mixed forest, temperate deciduous forest, taiga, tundra, hot desert, and polar desert.[43] Other researchers have recently categorized other biomes, such as the human and oceanic microbiomes. To a microbe, the human body is a habitat and a landscape.[44] Microbiomes were discovered largely through advances in molecular genetics, which have revealed a hidden richness of microbial diversity on the planet. The oceanic microbiome plays a significant role in the ecological biogeochemistry of the planet’s oceans.[45]

Biosphere[edit]

The largest scale of ecological organization is the biosphere: the total sum of ecosystems on the planet. Ecological relationships regulate the flux of energy, nutrients, and climate all the way up to the planetary scale. For example, the dynamic history of the planetary atmosphere’s CO2 and O2 composition has been affected by the biogenic flux of gases coming from respiration and photosynthesis, with levels fluctuating over time in relation to the ecology and evolution of plants and animals.[46] Ecological theory has also been used to explain self-emergent regulatory phenomena at the planetary scale: for example, the Gaia hypothesis is an example of holism applied in ecological theory.[47] The Gaia hypothesis states that there is an emergent feedback loop generated by the metabolism of living organisms that maintains the core temperature of the Earth and atmospheric conditions within a narrow self-regulating range of tolerance.[48]

Population ecology[edit]

Population ecology studies the dynamics of species populations and how these populations interact with the wider environment.[5] A population consists of individuals of the same species that live, interact, and migrate through the same niche and habitat.[49]

A primary law of population ecology is the Malthusian growth model[50] which states, «a population will grow (or decline) exponentially as long as the environment experienced by all individuals in the population remains constant.»[50]: 18  Simplified population models usually starts with four variables: death, birth, immigration, and emigration.

An example of an introductory population model describes a closed population, such as on an island, where immigration and emigration does not take place. Hypotheses are evaluated with reference to a null hypothesis which states that random processes create the observed data. In these island models, the rate of population change is described by:

{displaystyle {frac {operatorname {d} N(t)}{operatorname {d} t}}=bN(t)-dN(t)=(b-d)N(t)=rN(t),}

where N is the total number of individuals in the population, b and d are the per capita rates of birth and death respectively, and r is the per capita rate of population change.[50][51]

Using these modeling techniques, Malthus’ population principle of growth was later transformed into a model known as the logistic equation by Pierre Verhulst:

{displaystyle {frac {operatorname {d} N(t)}{operatorname {d} t}}=rN(t)-alpha N(t)^{2}=rN(t)left({frac {K-N(t)}{K}}right),}

where N(t) is the number of individuals measured as biomass density as a function of time, t, r is the maximum per-capita rate of change commonly known as the intrinsic rate of growth, and alpha is the crowding coefficient, which represents the reduction in population growth rate per individual added. The formula states that the rate of change in population size ({displaystyle mathrm {d} N(t)/mathrm {d} t}) will grow to approach equilibrium, where ({displaystyle mathrm {d} N(t)/mathrm {d} t=0}), when the rates of increase and crowding are balanced, {displaystyle r/alpha }. A common, analogous model fixes the equilibrium, {displaystyle r/alpha } as K, which is known as the «carrying capacity.»

Population ecology builds upon these introductory models to further understand demographic processes in real study populations. Commonly used types of data include life history, fecundity, and survivorship, and these are analyzed using mathematical techniques such as matrix algebra. The information is used for managing wildlife stocks and setting harvest quotas.[51][52] In cases where basic models are insufficient, ecologists may adopt different kinds of statistical methods, such as the Akaike information criterion,[53] or use models that can become mathematically complex as «several competing hypotheses are simultaneously confronted with the data.»[54]

Metapopulations and migration[edit]

The concept of metapopulations was defined in 1969[55] as «a population of populations which go extinct locally and recolonize».[56]: 105  Metapopulation ecology is another statistical approach that is often used in conservation research.[57] Metapopulation models simplify the landscape into patches of varying levels of quality,[58] and metapopulations are linked by the migratory behaviours of organisms. Animal migration is set apart from other kinds of movement because it involves the seasonal departure and return of individuals from a habitat.[59] Migration is also a population-level phenomenon, as with the migration routes followed by plants as they occupied northern post-glacial environments. Plant ecologists use pollen records that accumulate and stratify in wetlands to reconstruct the timing of plant migration and dispersal relative to historic and contemporary climates. These migration routes involved an expansion of the range as plant populations expanded from one area to another. There is a larger taxonomy of movement, such as commuting, foraging, territorial behavior, stasis, and ranging. Dispersal is usually distinguished from migration because it involves the one-way permanent movement of individuals from their birth population into another population.[60][61]

In metapopulation terminology, migrating individuals are classed as emigrants (when they leave a region) or immigrants (when they enter a region), and sites are classed either as sources or sinks. A site is a generic term that refers to places where ecologists sample populations, such as ponds or defined sampling areas in a forest. Source patches are productive sites that generate a seasonal supply of juveniles that migrate to other patch locations. Sink patches are unproductive sites that only receive migrants; the population at the site will disappear unless rescued by an adjacent source patch or environmental conditions become more favorable. Metapopulation models examine patch dynamics over time to answer potential questions about spatial and demographic ecology. The ecology of metapopulations is a dynamic process of extinction and colonization. Small patches of lower quality (i.e., sinks) are maintained or rescued by a seasonal influx of new immigrants. A dynamic metapopulation structure evolves from year to year, where some patches are sinks in dry years and are sources when conditions are more favorable. Ecologists use a mixture of computer models and field studies to explain metapopulation structure.[62][63]

[edit]

Community ecology examines how interactions among species and their environment affect the abundance, distribution and diversity of species within communities.

Johnson & Stinchcomb (2007)[64]: 250 

Community ecology is the study of the interactions among a collection of species that inhabit the same geographic area. Community ecologists study the determinants of patterns and processes for two or more interacting species. Research in community ecology might measure species diversity in grasslands in relation to soil fertility. It might also include the analysis of predator-prey dynamics, competition among similar plant species, or mutualistic interactions between crabs and corals.

Ecosystem ecology[edit]

These ecosystems, as we may call them, are of the most various kinds and sizes. They form one category of the multitudinous physical systems of the universe, which range from the universe as a whole down to the atom.

Tansley (1935)[65]: 299 

Ecosystems may be habitats within biomes that form an integrated whole and a dynamically responsive system having both physical and biological complexes. Ecosystem ecology is the science of determining the fluxes of materials (e.g. carbon, phosphorus) between different pools (e.g., tree biomass, soil organic material). Ecosystem ecologists attempt to determine the underlying causes of these fluxes. Research in ecosystem ecology might measure primary production (g C/m^2) in a wetland in relation to decomposition and consumption rates (g C/m^2/y). This requires an understanding of the community connections between plants (i.e., primary producers) and the decomposers (e.g., fungi and bacteria),[66]

The underlying concept of an ecosystem can be traced back to 1864 in the published work of George Perkins Marsh («Man and Nature»).[67][68] Within an ecosystem, organisms are linked to the physical and biological components of their environment to which they are adapted.[65] Ecosystems are complex adaptive systems where the interaction of life processes form self-organizing patterns across different scales of time and space.[69] Ecosystems are broadly categorized as terrestrial, freshwater, atmospheric, or marine. Differences stem from the nature of the unique physical environments that shapes the biodiversity within each. A more recent addition to ecosystem ecology are technoecosystems, which are affected by or primarily the result of human activity.[5]

Food webs[edit]

A food web is the archetypal ecological network. Plants capture solar energy and use it to synthesize simple sugars during photosynthesis. As plants grow, they accumulate nutrients and are eaten by grazing herbivores, and the energy is transferred through a chain of organisms by consumption. The simplified linear feeding pathways that move from a basal trophic species to a top consumer is called the food chain. The larger interlocking pattern of food chains in an ecological community creates a complex food web. Food webs are a type of concept map or a heuristic device that is used to illustrate and study pathways of energy and material flows.[7][70][71]

Food webs are often limited relative to the real world. Complete empirical measurements are generally restricted to a specific habitat, such as a cave or a pond, and principles gleaned from food web microcosm studies are extrapolated to larger systems.[72] Feeding relations require extensive investigations into the gut contents of organisms, which can be difficult to decipher, or stable isotopes can be used to trace the flow of nutrient diets and energy through a food web.[73] Despite these limitations, food webs remain a valuable tool in understanding community ecosystems.[74]

Food webs exhibit principles of ecological emergence through the nature of trophic relationships: some species have many weak feeding links (e.g., omnivores) while some are more specialized with fewer stronger feeding links (e.g., primary predators). Theoretical and empirical studies identify non-random emergent patterns of few strong and many weak linkages that explain how ecological communities remain stable over time.[75] Food webs are composed of subgroups where members in a community are linked by strong interactions, and the weak interactions occur between these subgroups. This increases food web stability.[76] Step by step lines or relations are drawn until a web of life is illustrated.[71][77][78][79]

Trophic levels[edit]

A trophic pyramid (a) and a food-web (b) illustrating ecological relationships among creatures that are typical of a northern boreal terrestrial ecosystem. The trophic pyramid roughly represents the biomass (usually measured as total dry-weight) at each level. Plants generally have the greatest biomass. Names of trophic categories are shown to the right of the pyramid. Some ecosystems, such as many wetlands, do not organize as a strict pyramid, because aquatic plants are not as productive as long-lived terrestrial plants such as trees. Ecological trophic pyramids are typically one of three kinds: 1) pyramid of numbers, 2) pyramid of biomass, or 3) pyramid of energy.[5]: 598 

A trophic level (from Greek troph, τροφή, trophē, meaning «food» or «feeding») is «a group of organisms acquiring a considerable majority of its energy from the lower adjacent level (according to ecological pyramids) nearer the abiotic source.»[80]: 383  Links in food webs primarily connect feeding relations or trophism among species. Biodiversity within ecosystems can be organized into trophic pyramids, in which the vertical dimension represents feeding relations that become further removed from the base of the food chain up toward top predators, and the horizontal dimension represents the abundance or biomass at each level.[81] When the relative abundance or biomass of each species is sorted into its respective trophic level, they naturally sort into a ‘pyramid of numbers’.[82]

Species are broadly categorized as autotrophs (or primary producers), heterotrophs (or consumers), and Detritivores (or decomposers). Autotrophs are organisms that produce their own food (production is greater than respiration) by photosynthesis or chemosynthesis. Heterotrophs are organisms that must feed on others for nourishment and energy (respiration exceeds production).[5] Heterotrophs can be further sub-divided into different functional groups, including primary consumers (strict herbivores), secondary consumers (carnivorous predators that feed exclusively on herbivores), and tertiary consumers (predators that feed on a mix of herbivores and predators).[83] Omnivores do not fit neatly into a functional category because they eat both plant and animal tissues. It has been suggested that omnivores have a greater functional influence as predators because compared to herbivores, they are relatively inefficient at grazing.[84]

Trophic levels are part of the holistic or complex systems view of ecosystems.[85][86] Each trophic level contains unrelated species that are grouped together because they share common ecological functions, giving a macroscopic view of the system.[87] While the notion of trophic levels provides insight into energy flow and top-down control within food webs, it is troubled by the prevalence of omnivory in real ecosystems. This has led some ecologists to «reiterate that the notion that species clearly aggregate into discrete, homogeneous trophic levels is fiction.»[88]: 815  Nonetheless, recent studies have shown that real trophic levels do exist, but «above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores.»[89]: 612 

Keystone species[edit]

A keystone species is a species that is connected to a disproportionately large number of other species in the food-web. Keystone species have lower levels of biomass in the trophic pyramid relative to the importance of their role. The many connections that a keystone species holds means that it maintains the organization and structure of entire communities. The loss of a keystone species results in a range of dramatic cascading effects (termed trophic cascades) that alters trophic dynamics, other food web connections, and can cause the extinction of other species.[90][91] The term keystone species was coined by Robert Paine in 1969 and is a reference to the keystone architectural feature as the removal of a keystone species can result in a community collapse just as the removal of the keystone in an arch can result in the arch’s loss of stability.[92]

Sea otters (Enhydra lutris) are commonly cited as an example of a keystone species because they limit the density of sea urchins that feed on kelp. If sea otters are removed from the system, the urchins graze until the kelp beds disappear, and this has a dramatic effect on community structure.[93] Hunting of sea otters, for example, is thought to have led indirectly to the extinction of the Steller’s sea cow (Hydrodamalis gigas).[94] While the keystone species concept has been used extensively as a conservation tool, it has been criticized for being poorly defined from an operational stance. It is difficult to experimentally determine what species may hold a keystone role in each ecosystem. Furthermore, food web theory suggests that keystone species may not be common, so it is unclear how generally the keystone species model can be applied.[93][95]

Complexity[edit]

Complexity is understood as a large computational effort needed to piece together numerous interacting parts exceeding the iterative memory capacity of the human mind. Global patterns of biological diversity are complex. This biocomplexity stems from the interplay among ecological processes that operate and influence patterns at different scales that grade into each other, such as transitional areas or ecotones spanning landscapes. Complexity stems from the interplay among levels of biological organization as energy, and matter is integrated into larger units that superimpose onto the smaller parts. «What were wholes on one level become parts on a higher one.»[96]: 209  Small scale patterns do not necessarily explain large scale phenomena, otherwise captured in the expression (coined by Aristotle) ‘the sum is greater than the parts’.[97][98][E]

«Complexity in ecology is of at least six distinct types: spatial, temporal, structural, process, behavioral, and geometric.»[99]: 3  From these principles, ecologists have identified emergent and self-organizing phenomena that operate at different environmental scales of influence, ranging from molecular to planetary, and these require different explanations at each integrative level.[48][100] Ecological complexity relates to the dynamic resilience of ecosystems that transition to multiple shifting steady-states directed by random fluctuations of history.[9][101] Long-term ecological studies provide important track records to better understand the complexity and resilience of ecosystems over longer temporal and broader spatial scales. These studies are managed by the International Long Term Ecological Network (LTER).[102] The longest experiment in existence is the Park Grass Experiment, which was initiated in 1856.[103] Another example is the Hubbard Brook study, which has been in operation since 1960.[104]

Holism[edit]

Holism remains a critical part of the theoretical foundation in contemporary ecological studies. Holism addresses the biological organization of life that self-organizes into layers of emergent whole systems that function according to non-reducible properties. This means that higher-order patterns of a whole functional system, such as an ecosystem, cannot be predicted or understood by a simple summation of the parts.[105] «New properties emerge because the components interact, not because the basic nature of the components is changed.»[5]: 8 

Ecological studies are necessarily holistic as opposed to reductionistic.[36][100][106] Holism has three scientific meanings or uses that identify with ecology: 1) the mechanistic complexity of ecosystems, 2) the practical description of patterns in quantitative reductionist terms where correlations may be identified but nothing is understood about the causal relations without reference to the whole system, which leads to 3) a metaphysical hierarchy whereby the causal relations of larger systems are understood without reference to the smaller parts. Scientific holism differs from mysticism that has appropriated the same term. An example of metaphysical holism is identified in the trend of increased exterior thickness in shells of different species. The reason for a thickness increase can be understood through reference to principles of natural selection via predation without the need to reference or understand the biomolecular properties of the exterior shells.[107]

Relation to evolution[edit]

Ecology and evolutionary biology are considered sister disciplines of the life sciences. Natural selection, life history, development, adaptation, populations, and inheritance are examples of concepts that thread equally into ecological and evolutionary theory. Morphological, behavioural, and genetic traits, for example, can be mapped onto evolutionary trees to study the historical development of a species in relation to their functions and roles in different ecological circumstances. In this framework, the analytical tools of ecologists and evolutionists overlap as they organize, classify, and investigate life through common systematic principles, such as phylogenetics or the Linnaean system of taxonomy.[108] The two disciplines often appear together, such as in the title of the journal Trends in Ecology and Evolution.[109] There is no sharp boundary separating ecology from evolution, and they differ more in their areas of applied focus. Both disciplines discover and explain emergent and unique properties and processes operating across different spatial or temporal scales of organization.[36][48] While the boundary between ecology and evolution is not always clear, ecologists study the abiotic and biotic factors that influence evolutionary processes,[110][111] and evolution can be rapid, occurring on ecological timescales as short as one generation.[112]

Behavioural ecology[edit]

Social display and colour variation in differently adapted species of chameleons (Bradypodion spp.). Chameleons change their skin colour to match their background as a behavioural defence mechanism and also use colour to communicate with other members of their species, such as dominant (left) versus submissive (right) patterns shown in the three species (A-C) above.[113]

All organisms can exhibit behaviours. Even plants express complex behaviour, including memory and communication.[114] Behavioural ecology is the study of an organism’s behaviour in its environment and its ecological and evolutionary implications. Ethology is the study of observable movement or behaviour in animals. This could include investigations of motile sperm of plants, mobile phytoplankton, zooplankton swimming toward the female egg, the cultivation of fungi by weevils, the mating dance of a salamander, or social gatherings of amoeba.[115][116][117][118][119]

Adaptation is the central unifying concept in behavioural ecology.[120] Behaviours can be recorded as traits and inherited in much the same way that eye and hair colour can. Behaviours can evolve by means of natural selection as adaptive traits conferring functional utilities that increases reproductive fitness.[121][122]

Mutualism: Leafhoppers (Eurymela fenestrata) are protected by ants (Iridomyrmex purpureus) in a mutualistic relationship. The ants protect the leafhoppers from predators and stimulate feeding in the leafhoppers, and in return, the leafhoppers feeding on plants exude honeydew from their anus that provides energy and nutrients to tending ants.[123]

Predator-prey interactions are an introductory concept into food-web studies as well as behavioural ecology.[124] Prey species can exhibit different kinds of behavioural adaptations to predators, such as avoid, flee, or defend. Many prey species are faced with multiple predators that differ in the degree of danger posed. To be adapted to their environment and face predatory threats, organisms must balance their energy budgets as they invest in different aspects of their life history, such as growth, feeding, mating, socializing, or modifying their habitat. Hypotheses posited in behavioural ecology are generally based on adaptive principles of conservation, optimization, or efficiency.[33][110][125] For example, «[t]he threat-sensitive predator avoidance hypothesis predicts that prey should assess the degree of threat posed by different predators and match their behaviour according to current levels of risk»[126] or «[t]he optimal flight initiation distance occurs where expected postencounter fitness is maximized, which depends on the prey’s initial fitness, benefits obtainable by not fleeing, energetic escape costs, and expected fitness loss due to predation risk.»[127]

Elaborate sexual displays and posturing are encountered in the behavioural ecology of animals. The birds-of-paradise, for example, sing and display elaborate ornaments during courtship. These displays serve a dual purpose of signalling healthy or well-adapted individuals and desirable genes. The displays are driven by sexual selection as an advertisement of quality of traits among suitors.[128]

Cognitive ecology[edit]

Cognitive ecology integrates theory and observations from evolutionary ecology and neurobiology, primarily cognitive science, in order to understand the effect that animal interaction with their habitat has on their cognitive systems and how those systems restrict behavior within an ecological and evolutionary framework.[129] «Until recently, however, cognitive scientists have not paid sufficient attention to the fundamental fact that cognitive traits evolved under particular natural settings. With consideration of the selection pressure on cognition, cognitive ecology can contribute intellectual coherence to the multidisciplinary study of cognition.»[130][131] As a study involving the ‘coupling’ or interactions between organism and environment, cognitive ecology is closely related to enactivism,[129] a field based upon the view that «…we must see the organism and environment as bound together in reciprocal specification and selection…».[132]

[edit]

Social-ecological behaviours are notable in the social insects, slime moulds, social spiders, human society, and naked mole-rats where eusocialism has evolved. Social behaviours include reciprocally beneficial behaviours among kin and nest mates[117][122][133] and evolve from kin and group selection. Kin selection explains altruism through genetic relationships, whereby an altruistic behaviour leading to death is rewarded by the survival of genetic copies distributed among surviving relatives. The social insects, including ants, bees, and wasps are most famously studied for this type of relationship because the male drones are clones that share the same genetic make-up as every other male in the colony.[122] In contrast, group selectionists find examples of altruism among non-genetic relatives and explain this through selection acting on the group; whereby, it becomes selectively advantageous for groups if their members express altruistic behaviours to one another. Groups with predominantly altruistic members survive better than groups with predominantly selfish members.[122][134]

Coevolution[edit]

Parasitism: A harvestman arachnid being parasitized by mites. The harvestman is being consumed, while the mites benefit from traveling on and feeding off of their host.

Ecological interactions can be classified broadly into a host and an associate relationship. A host is any entity that harbours another that is called the associate.[135] Relationships between species that are mutually or reciprocally beneficial are called mutualisms. Examples of mutualism include fungus-growing ants employing agricultural symbiosis, bacteria living in the guts of insects and other organisms, the fig wasp and yucca moth pollination complex, lichens with fungi and photosynthetic algae, and corals with photosynthetic algae.[136][137] If there is a physical connection between host and associate, the relationship is called symbiosis. Approximately 60% of all plants, for example, have a symbiotic relationship with arbuscular mycorrhizal fungi living in their roots forming an exchange network of carbohydrates for mineral nutrients.[138]

Indirect mutualisms occur where the organisms live apart. For example, trees living in the equatorial regions of the planet supply oxygen into the atmosphere that sustains species living in distant polar regions of the planet. This relationship is called commensalism because many others receive the benefits of clean air at no cost or harm to trees supplying the oxygen.[5][139] If the associate benefits while the host suffers, the relationship is called parasitism. Although parasites impose a cost to their host (e.g., via damage to their reproductive organs or propagules, denying the services of a beneficial partner), their net effect on host fitness is not necessarily negative and, thus, becomes difficult to forecast.[140][141] Co-evolution is also driven by competition among species or among members of the same species under the banner of reciprocal antagonism, such as grasses competing for growth space. The Red Queen Hypothesis, for example, posits that parasites track down and specialize on the locally common genetic defense systems of its host that drives the evolution of sexual reproduction to diversify the genetic constituency of populations responding to the antagonistic pressure.[142][143]

Biogeography[edit]

Biogeography (an amalgamation of biology and geography) is the comparative study of the geographic distribution of organisms and the corresponding evolution of their traits in space and time.[144] The Journal of Biogeography was established in 1974.[145] Biogeography and ecology share many of their disciplinary roots. For example, the theory of island biogeography, published by the Robert MacArthur and Edward O. Wilson in 1967[146] is considered one of the fundamentals of ecological theory.[147]

Biogeography has a long history in the natural sciences concerning the spatial distribution of plants and animals. Ecology and evolution provide the explanatory context for biogeographical studies.[144] Biogeographical patterns result from ecological processes that influence range distributions, such as migration and dispersal.[147] and from historical processes that split populations or species into different areas. The biogeographic processes that result in the natural splitting of species explain much of the modern distribution of the Earth’s biota. The splitting of lineages in a species is called vicariance biogeography and it is a sub-discipline of biogeography.[148] There are also practical applications in the field of biogeography concerning ecological systems and processes. For example, the range and distribution of biodiversity and invasive species responding to climate change is a serious concern and active area of research in the context of global warming.[149][150]

r/K selection theory[edit]

A population ecology concept is r/K selection theory,[D] one of the first predictive models in ecology used to explain life-history evolution. The premise behind the r/K selection model is that natural selection pressures change according to population density. For example, when an island is first colonized, density of individuals is low. The initial increase in population size is not limited by competition, leaving an abundance of available resources for rapid population growth. These early phases of population growth experience density-independent forces of natural selection, which is called r-selection. As the population becomes more crowded, it approaches the island’s carrying capacity, thus forcing individuals to compete more heavily for fewer available resources. Under crowded conditions, the population experiences density-dependent forces of natural selection, called K-selection.[151]

In the r/K-selection model, the first variable r is the intrinsic rate of natural increase in population size and the second variable K is the carrying capacity of a population.[33] Different species evolve different life-history strategies spanning a continuum between these two selective forces. An r-selected species is one that has high birth rates, low levels of parental investment, and high rates of mortality before individuals reach maturity. Evolution favours high rates of fecundity in r-selected species. Many kinds of insects and invasive species exhibit r-selected characteristics. In contrast, a K-selected species has low rates of fecundity, high levels of parental investment in the young, and low rates of mortality as individuals mature. Humans and elephants are examples of species exhibiting K-selected characteristics, including longevity and efficiency in the conversion of more resources into fewer offspring.[146][152]

Molecular ecology[edit]

The important relationship between ecology and genetic inheritance predates modern techniques for molecular analysis. Molecular ecological research became more feasible with the development of rapid and accessible genetic technologies, such as the polymerase chain reaction (PCR). The rise of molecular technologies and the influx of research questions into this new ecological field resulted in the publication Molecular Ecology in 1992.[153] Molecular ecology uses various analytical techniques to study genes in an evolutionary and ecological context. In 1994, John Avise also played a leading role in this area of science with the publication of his book, Molecular Markers, Natural History and Evolution.[154] Newer technologies opened a wave of genetic analysis into organisms once difficult to study from an ecological or evolutionary standpoint, such as bacteria, fungi, and nematodes. Molecular ecology engendered a new research paradigm for investigating ecological questions considered otherwise intractable. Molecular investigations revealed previously obscured details in the tiny intricacies of nature and improved resolution into probing questions about behavioural and biogeographical ecology.[154] For example, molecular ecology revealed promiscuous sexual behaviour and multiple male partners in tree swallows previously thought to be socially monogamous.[155] In a biogeographical context, the marriage between genetics, ecology, and evolution resulted in a new sub-discipline called phylogeography.[156]

Human ecology[edit]

The history of life on Earth has been a history of interaction between living things and their surroundings. To a large extent, the physical form and the habits of the earth’s vegetation and its animal life have been molded by the environment. Considering the whole span of earthly time, the opposite effect, in which life actually modifies its surroundings, has been relatively slight. Only within the moment of time represented by the present century has one species man acquired significant power to alter the nature of his world.

Rachel Carson, «Silent Spring»[157]

Ecology is as much a biological science as it is a human science.[5] Human ecology is an interdisciplinary investigation into the ecology of our species. «Human ecology may be defined: (1) from a bioecological standpoint as the study of man as the ecological dominant in plant and animal communities and systems; (2) from a bioecological standpoint as simply another animal affecting and being affected by his physical environment; and (3) as a human being, somehow different from animal life in general, interacting with physical and modified environments in a distinctive and creative way. A truly interdisciplinary human ecology will most likely address itself to all three.»[158]: 3  The term was formally introduced in 1921, but many sociologists, geographers, psychologists, and other disciplines were interested in human relations to natural systems centuries prior, especially in the late 19th century.[158][159]

The ecological complexities human beings are facing through the technological transformation of the planetary biome has brought on the Anthropocene. The unique set of circumstances has generated the need for a new unifying science called coupled human and natural systems that builds upon, but moves beyond the field of human ecology.[105] Ecosystems tie into human societies through the critical and all-encompassing life-supporting functions they sustain. In recognition of these functions and the incapability of traditional economic valuation methods to see the value in ecosystems, there has been a surge of interest in social-natural capital, which provides the means to put a value on the stock and use of information and materials stemming from ecosystem goods and services. Ecosystems produce, regulate, maintain, and supply services of critical necessity and beneficial to human health (cognitive and physiological), economies, and they even provide an information or reference function as a living library giving opportunities for science and cognitive development in children engaged in the complexity of the natural world. Ecosystems relate importantly to human ecology as they are the ultimate base foundation of global economics as every commodity, and the capacity for exchange ultimately stems from the ecosystems on Earth.[105][160][161][162]

Ecosystem management is not just about science nor is it simply an extension of traditional resource management; it offers a fundamental reframing of how humans may work with nature.

Grumbine (1994)[163]: 27 

Ecology is an employed science of restoration, repairing disturbed sites through human intervention, in natural resource management, and in environmental impact assessments. Edward O. Wilson predicted in 1992 that the 21st century «will be the era of restoration in ecology».[164] Ecological science has boomed in the industrial investment of restoring ecosystems and their processes in abandoned sites after disturbance. Natural resource managers, in forestry, for example, employ ecologists to develop, adapt, and implement ecosystem based methods into the planning, operation, and restoration phases of land-use. Another example of conservation is seen on the east coast of the United States in Boston, MA. The city of Boston implemented the Wetland Ordinance,[165] improving the stability of their wetland environments by implementing soil amendments that will improve groundwater storage and flow, and trimming or removal of vegetation that could cause harm to water quality.[citation needed] Ecological science is used in the methods of sustainable harvesting, disease, and fire outbreak management, in fisheries stock management, for integrating land-use with protected areas and communities, and conservation in complex geo-political landscapes.[22][163][166][167]

Relation to the environment[edit]

The environment of ecosystems includes both physical parameters and biotic attributes. It is dynamically interlinked and contains resources for organisms at any time throughout their life cycle.[5][168] Like ecology, the term environment has different conceptual meanings and overlaps with the concept of nature. Environment «includes the physical world, the social world of human relations and the built world of human creation.»[169]: 62  The physical environment is external to the level of biological organization under investigation, including abiotic factors such as temperature, radiation, light, chemistry, climate and geology. The biotic environment includes genes, cells, organisms, members of the same species (conspecifics) and other species that share a habitat.[170]

The distinction between external and internal environments, however, is an abstraction parsing life and environment into units or facts that are inseparable in reality. There is an interpenetration of cause and effect between the environment and life. The laws of thermodynamics, for example, apply to ecology by means of its physical state. With an understanding of metabolic and thermodynamic principles, a complete accounting of energy and material flow can be traced through an ecosystem. In this way, the environmental and ecological relations are studied through reference to conceptually manageable and isolated material parts. After the effective environmental components are understood through reference to their causes; however, they conceptually link back together as an integrated whole, or holocoenotic system as it was once called. This is known as the dialectical approach to ecology. The dialectical approach examines the parts but integrates the organism and the environment into a dynamic whole (or umwelt). Change in one ecological or environmental factor can concurrently affect the dynamic state of an entire ecosystem.[36][171]

Disturbance and resilience[edit]

Ecosystems are regularly confronted with natural environmental variations and disturbances over time and geographic space. A disturbance is any process that removes biomass from a community, such as a fire, flood, drought, or predation.[172] Disturbances occur over vastly different ranges in terms of magnitudes as well as distances and time periods,[173] and are both the cause and product of natural fluctuations in death rates, species assemblages, and biomass densities within an ecological community. These disturbances create places of renewal where new directions emerge from the patchwork of natural experimentation and opportunity.[172][174][175] Ecological resilience is a cornerstone theory in ecosystem management. Biodiversity fuels the resilience of ecosystems acting as a kind of regenerative insurance.[175]

Metabolism and the early atmosphere[edit]

Metabolism – the rate at which energy and material resources are taken up from the environment, transformed within an organism, and allocated to maintenance, growth and reproduction – is a fundamental physiological trait.

Ernest et al.[176]: 991 

The Earth was formed approximately 4.5 billion years ago.[177] As it cooled and a crust and oceans formed, its atmosphere transformed from being dominated by hydrogen to one composed mostly of methane and ammonia. Over the next billion years, the metabolic activity of life transformed the atmosphere into a mixture of carbon dioxide, nitrogen, and water vapor. These gases changed the way that light from the sun hit the Earth’s surface and greenhouse effects trapped heat. There were untapped sources of free energy within the mixture of reducing and oxidizing gasses that set the stage for primitive ecosystems to evolve and, in turn, the atmosphere also evolved.[178]

Throughout history, the Earth’s atmosphere and biogeochemical cycles have been in a dynamic equilibrium with planetary ecosystems. The history is characterized by periods of significant transformation followed by millions of years of stability.[179] The evolution of the earliest organisms, likely anaerobic methanogen microbes, started the process by converting atmospheric hydrogen into methane (4H2 + CO2 → CH4 + 2H2O). Anoxygenic photosynthesis reduced hydrogen concentrations and increased atmospheric methane, by converting hydrogen sulfide into water or other sulfur compounds (for example, 2H2S + CO2 + hv → CH2O + H2O + 2S). Early forms of fermentation also increased levels of atmospheric methane. The transition to an oxygen-dominant atmosphere (the Great Oxidation) did not begin until approximately 2.4–2.3 billion years ago, but photosynthetic processes started 0.3 to 1 billion years prior.[179][180]

Radiation: heat, temperature and light[edit]


The biology of life operates within a certain range of temperatures. Heat is a form of energy that regulates temperature. Heat affects growth rates, activity, behaviour, and primary production. Temperature is largely dependent on the incidence of solar radiation. The latitudinal and longitudinal spatial variation of temperature greatly affects climates and consequently the distribution of biodiversity and levels of primary production in different ecosystems or biomes across the planet. Heat and temperature relate importantly to metabolic activity. Poikilotherms, for example, have a body temperature that is largely regulated and dependent on the temperature of the external environment. In contrast, homeotherms regulate their internal body temperature by expending metabolic energy.[110][111][171]

There is a relationship between light, primary production, and ecological energy budgets. Sunlight is the primary input of energy into the planet’s ecosystems. Light is composed of electromagnetic energy of different wavelengths. Radiant energy from the sun generates heat, provides photons of light measured as active energy in the chemical reactions of life, and also acts as a catalyst for genetic mutation.[110][111][171] Plants, algae, and some bacteria absorb light and assimilate the energy through photosynthesis. Organisms capable of assimilating energy by photosynthesis or through inorganic fixation of H2S are autotrophs. Autotrophs—responsible for primary production—assimilate light energy which becomes metabolically stored as potential energy in the form of biochemical enthalpic bonds.[110][111][171]

Physical environments[edit]

Water[edit]

Wetland conditions such as shallow water, high plant productivity, and anaerobic substrates provide a suitable environment for important physical, biological, and chemical processes. Because of these processes, wetlands play a vital role in global nutrient and element cycles.

Cronk & Fennessy (2001)[181]: 29 

Diffusion of carbon dioxide and oxygen is approximately 10,000 times slower in water than in air. When soils are flooded, they quickly lose oxygen, becoming hypoxic (an environment with O2 concentration below 2 mg/liter) and eventually completely anoxic where anaerobic bacteria thrive among the roots. Water also influences the intensity and spectral composition of light as it reflects off the water surface and submerged particles.[181] Aquatic plants exhibit a wide variety of morphological and physiological adaptations that allow them to survive, compete, and diversify in these environments. For example, their roots and stems contain large air spaces (aerenchyma) that regulate the efficient transportation of gases (for example, CO2 and O2) used in respiration and photosynthesis. Salt water plants (halophytes) have additional specialized adaptations, such as the development of special organs for shedding salt and osmoregulating their internal salt (NaCl) concentrations, to live in estuarine, brackish, or oceanic environments. Anaerobic soil microorganisms in aquatic environments use nitrate, manganese ions, ferric ions, sulfate, carbon dioxide, and some organic compounds; other microorganisms are facultative anaerobes and use oxygen during respiration when the soil becomes drier. The activity of soil microorganisms and the chemistry of the water reduces the oxidation-reduction potentials of the water. Carbon dioxide, for example, is reduced to methane (CH4) by methanogenic bacteria.[181] The physiology of fish is also specially adapted to compensate for environmental salt levels through osmoregulation. Their gills form electrochemical gradients that mediate salt excretion in salt water and uptake in fresh water.[182]

Gravity[edit]

The shape and energy of the land are significantly affected by gravitational forces. On a large scale, the distribution of gravitational forces on the earth is uneven and influences the shape and movement of tectonic plates as well as influencing geomorphic processes such as orogeny and erosion. These forces govern many of the geophysical properties and distributions of ecological biomes across the Earth. On the organismal scale, gravitational forces provide directional cues for plant and fungal growth (gravitropism), orientation cues for animal migrations, and influence the biomechanics and size of animals.[110] Ecological traits, such as allocation of biomass in trees during growth are subject to mechanical failure as gravitational forces influence the position and structure of branches and leaves.[183] The cardiovascular systems of animals are functionally adapted to overcome the pressure and gravitational forces that change according to the features of organisms (e.g., height, size, shape), their behaviour (e.g., diving, running, flying), and the habitat occupied (e.g., water, hot deserts, cold tundra).[184]

Pressure[edit]

Climatic and osmotic pressure places physiological constraints on organisms, especially those that fly and respire at high altitudes, or dive to deep ocean depths.[185] These constraints influence vertical limits of ecosystems in the biosphere, as organisms are physiologically sensitive and adapted to atmospheric and osmotic water pressure differences.[110] For example, oxygen levels decrease with decreasing pressure and are a limiting factor for life at higher altitudes.[186] Water transportation by plants is another important ecophysiological process affected by osmotic pressure gradients.[187][188][189] Water pressure in the depths of oceans requires that organisms adapt to these conditions. For example, diving animals such as whales, dolphins, and seals are specially adapted to deal with changes in sound due to water pressure differences.[190] Differences between hagfish species provide another example of adaptation to deep-sea pressure through specialized protein adaptations.[191]

Wind and turbulence[edit]

The architecture of the inflorescence in grasses is subject to the physical pressures of wind and shaped by the forces of natural selection facilitating wind-pollination (anemophily).[192][193]

Turbulent forces in air and water affect the environment and ecosystem distribution, form, and dynamics. On a planetary scale, ecosystems are affected by circulation patterns in the global trade winds. Wind power and the turbulent forces it creates can influence heat, nutrient, and biochemical profiles of ecosystems.[110] For example, wind running over the surface of a lake creates turbulence, mixing the water column and influencing the environmental profile to create thermally layered zones, affecting how fish, algae, and other parts of the aquatic ecosystem are structured.[194][195] Wind speed and turbulence also influence evapotranspiration rates and energy budgets in plants and animals.[181][196] Wind speed, temperature and moisture content can vary as winds travel across different land features and elevations. For example, the westerlies come into contact with the coastal and interior mountains of western North America to produce a rain shadow on the leeward side of the mountain. The air expands and moisture condenses as the winds increase in elevation; this is called orographic lift and can cause precipitation. This environmental process produces spatial divisions in biodiversity, as species adapted to wetter conditions are range-restricted to the coastal mountain valleys and unable to migrate across the xeric ecosystems (e.g., of the Columbia Basin in western North America) to intermix with sister lineages that are segregated to the interior mountain systems.[197][198]

Fire[edit]

Forest fires modify the land by leaving behind an environmental mosaic that diversifies the landscape into different seral stages and habitats of varied quality (left). Some species are adapted to forest fires, such as pine trees that open their cones only after fire exposure (right).

Plants convert carbon dioxide into biomass and emit oxygen into the atmosphere. By approximately 350 million years ago (the end of the Devonian period), photosynthesis had brought the concentration of atmospheric oxygen above 17%, which allowed combustion to occur.[199] Fire releases CO2 and converts fuel into ash and tar. Fire is a significant ecological parameter that raises many issues pertaining to its control and suppression.[200] While the issue of fire in relation to ecology and plants has been recognized for a long time,[201] Charles Cooper brought attention to the issue of forest fires in relation to the ecology of forest fire suppression and management in the 1960s.[202][203]

Native North Americans were among the first to influence fire regimes by controlling their spread near their homes or by lighting fires to stimulate the production of herbaceous foods and basketry materials.[204] Fire creates a heterogeneous ecosystem age and canopy structure, and the altered soil nutrient supply and cleared canopy structure opens new ecological niches for seedling establishment.[205][206] Most ecosystems are adapted to natural fire cycles. Plants, for example, are equipped with a variety of adaptations to deal with forest fires. Some species (e.g., Pinus halepensis) cannot germinate until after their seeds have lived through a fire or been exposed to certain compounds from smoke. Environmentally triggered germination of seeds is called serotiny.[207][208] Fire plays a major role in the persistence and resilience of ecosystems.[174]

Soils[edit]

Soil is the living top layer of mineral and organic dirt that covers the surface of the planet. It is the chief organizing centre of most ecosystem functions, and it is of critical importance in agricultural science and ecology. The decomposition of dead organic matter (for example, leaves on the forest floor), results in soils containing minerals and nutrients that feed into plant production. The whole of the planet’s soil ecosystems is called the pedosphere where a large biomass of the Earth’s biodiversity organizes into trophic levels. Invertebrates that feed and shred larger leaves, for example, create smaller bits for smaller organisms in the feeding chain. Collectively, these organisms are the detritivores that regulate soil formation.[209][210] Tree roots, fungi, bacteria, worms, ants, beetles, centipedes, spiders, mammals, birds, reptiles, amphibians, and other less familiar creatures all work to create the trophic web of life in soil ecosystems. Soils form composite phenotypes where inorganic matter is enveloped into the physiology of a whole community. As organisms feed and migrate through soils they physically displace materials, an ecological process called bioturbation. This aerates soils and stimulates heterotrophic growth and production. Soil microorganisms are influenced by and are fed back into the trophic dynamics of the ecosystem. No single axis of causality can be discerned to segregate the biological from geomorphological systems in soils.[211][212] Paleoecological studies of soils places the origin for bioturbation to a time before the Cambrian period. Other events, such as the evolution of trees and the colonization of land in the Devonian period played a significant role in the early development of ecological trophism in soils.[210][213][214]

Biogeochemistry and climate[edit]

Ecologists study and measure nutrient budgets to understand how these materials are regulated, flow, and recycled through the environment.[110][111][171] This research has led to an understanding that there is global feedback between ecosystems and the physical parameters of this planet, including minerals, soil, pH, ions, water, and atmospheric gases. Six major elements (hydrogen, carbon, nitrogen, oxygen, sulfur, and phosphorus; H, C, N, O, S, and P) form the constitution of all biological macromolecules and feed into the Earth’s geochemical processes. From the smallest scale of biology, the combined effect of billions upon billions of ecological processes amplify and ultimately regulate the biogeochemical cycles of the Earth. Understanding the relations and cycles mediated between these elements and their ecological pathways has significant bearing toward understanding global biogeochemistry.[215]

The ecology of global carbon budgets gives one example of the linkage between biodiversity and biogeochemistry. It is estimated that the Earth’s oceans hold 40,000 gigatonnes (Gt) of carbon, that vegetation and soil hold 2070 Gt, and that fossil fuel emissions are 6.3 Gt carbon per year.[216] There have been major restructurings in these global carbon budgets during the Earth’s history, regulated to a large extent by the ecology of the land. For example, through the early-mid Eocene volcanic outgassing, the oxidation of methane stored in wetlands, and seafloor gases increased atmospheric CO2 (carbon dioxide) concentrations to levels as high as 3500 ppm.[217]

In the Oligocene, from twenty-five to thirty-two million years ago, there was another significant restructuring of the global carbon cycle as grasses evolved a new mechanism of photosynthesis, C4 photosynthesis, and expanded their ranges. This new pathway evolved in response to the drop in atmospheric CO2 concentrations below 550 ppm.[218] The relative abundance and distribution of biodiversity alters the dynamics between organisms and their environment such that ecosystems can be both cause and effect in relation to climate change. Human-driven modifications to the planet’s ecosystems (e.g., disturbance, biodiversity loss, agriculture) contributes to rising atmospheric greenhouse gas levels. Transformation of the global carbon cycle in the next century is projected to raise planetary temperatures, lead to more extreme fluctuations in weather, alter species distributions, and increase extinction rates. The effect of global warming is already being registered in melting glaciers, melting mountain ice caps, and rising sea levels. Consequently, species distributions are changing along waterfronts and in continental areas where migration patterns and breeding grounds are tracking the prevailing shifts in climate. Large sections of permafrost are also melting to create a new mosaic of flooded areas having increased rates of soil decomposition activity that raises methane (CH4) emissions. There is concern over increases in atmospheric methane in the context of the global carbon cycle, because methane is a greenhouse gas that is 23 times more effective at absorbing long-wave radiation than CO2 on a 100-year time scale.[219] Hence, there is a relationship between global warming, decomposition and respiration in soils and wetlands producing significant climate feedbacks and globally altered biogeochemical cycles.[105][220][221][222][223][224]

History[edit]

Early beginnings[edit]

By ecology, we mean the whole science of the relations of the organism to the environment including, in the broad sense, all the «conditions of existence». Thus, the theory of evolution explains the housekeeping relations of organisms mechanistically as the necessary consequences of effectual causes; and so forms the monistic groundwork of ecology.

Ernst Haeckel (1866)[225]: 140  [B]

Ecology has a complex origin, due in large part to its interdisciplinary nature.[226] Ancient Greek philosophers such as Hippocrates and Aristotle were among the first to record observations on natural history. However, they viewed life in terms of essentialism, where species were conceptualized as static unchanging things while varieties were seen as aberrations of an idealized type. This contrasts against the modern understanding of ecological theory where varieties are viewed as the real phenomena of interest and having a role in the origins of adaptations by means of natural selection.[5][227][228] Early conceptions of ecology, such as a balance and regulation in nature can be traced to Herodotus (died c. 425 BC), who described one of the earliest accounts of mutualism in his observation of «natural dentistry». Basking Nile crocodiles, he noted, would open their mouths to give sandpipers safe access to pluck leeches out, giving nutrition to the sandpiper and oral hygiene for the crocodile.[226] Aristotle was an early influence on the philosophical development of ecology. He and his student Theophrastus made extensive observations on plant and animal migrations, biogeography, physiology, and their behavior, giving an early analogue to the modern concept of an ecological niche.[229][230]

Nowhere can one see more clearly illustrated what may be called the sensibility of such an organic complex, – expressed by the fact that whatever affects any species belonging to it, must speedily have its influence of some sort upon the whole assemblage. He will thus be made to see the impossibility of studying any form completely, out of relation to the other forms, – the necessity for taking a comprehensive survey of the whole as a condition to a satisfactory understanding of any part.

Stephen Forbes (1887)[231]

Nicola Perscheid - Ernst Haeckel.jpg Warming,Eugen-c1900.jpg

Ecological concepts such as food chains, population regulation, and productivity were first developed in the 1700s, through the published works of microscopist Antoni van Leeuwenhoek (1632–1723) and botanist Richard Bradley (1688?–1732).[5] Biogeographer Alexander von Humboldt (1769–1859) was an early pioneer in ecological thinking and was among the first to recognize ecological gradients, where species are replaced or altered in form along environmental gradients, such as a cline forming along a rise in elevation. Humboldt drew inspiration from Isaac Newton, as he developed a form of «terrestrial physics». In Newtonian fashion, he brought a scientific exactitude for measurement into natural history and even alluded to concepts that are the foundation of a modern ecological law on species-to-area relationships.[232][233][234] Natural historians, such as Humboldt, James Hutton, and Jean-Baptiste Lamarck (among others) laid the foundations of the modern ecological sciences.[235] The term «ecology» (German: Oekologie, Ökologie) was coined by Ernst Haeckel in his book Generelle Morphologie der Organismen (1866).[236] Haeckel was a zoologist, artist, writer, and later in life a professor of comparative anatomy.[225][237]

Opinions differ on who was the founder of modern ecological theory. Some mark Haeckel’s definition as the beginning;[238] others say it was Eugenius Warming with the writing of Oecology of Plants: An Introduction to the Study of Plant Communities (1895),[239] or Carl Linnaeus’ principles on the economy of nature that matured in the early 18th century.[240][241] Linnaeus founded an early branch of ecology that he called the economy of nature.[240] His works influenced Charles Darwin, who adopted Linnaeus’ phrase on the economy or polity of nature in The Origin of Species.[225] Linnaeus was the first to frame the balance of nature as a testable hypothesis. Haeckel, who admired Darwin’s work, defined ecology in reference to the economy of nature, which has led some to question whether ecology and the economy of nature are synonymous.[241]

The layout of the first ecological experiment, carried out in a grass garden at Woburn Abbey in 1816, was noted by Charles Darwin in The Origin of Species. The experiment studied the performance of different mixtures of species planted in different kinds of soils.[242][243]

From Aristotle until Darwin, the natural world was predominantly considered static and unchanging. Prior to The Origin of Species, there was little appreciation or understanding of the dynamic and reciprocal relations between organisms, their adaptations, and the environment.[227] An exception is the 1789 publication Natural History of Selborne by Gilbert White (1720–1793), considered by some to be one of the earliest texts on ecology.[244] While Charles Darwin is mainly noted for his treatise on evolution,[245] he was one of the founders of soil ecology,[246] and he made note of the first ecological experiment in The Origin of Species.[242] Evolutionary theory changed the way that researchers approached the ecological sciences.[247]

Since 1900[edit]

Modern ecology is a young science that first attracted substantial scientific attention toward the end of the 19th century (around the same time that evolutionary studies were gaining scientific interest). The scientist Ellen Swallow Richards adopted the term «oekology» (which eventually morphed into home economics) in the U.S. as early as 1892.[248]

In the early 20th century, ecology transitioned from a more descriptive form of natural history to a more analytical form of scientific natural history.[232][235] Frederic Clements published the first American ecology book in 1905,[249] presenting the idea of plant communities as a superorganism. This publication launched a debate between ecological holism and individualism that lasted until the 1970s. Clements’ superorganism concept proposed that ecosystems progress through regular and determined stages of seral development that are analogous to the developmental stages of an organism. The Clementsian paradigm was challenged by Henry Gleason,[250] who stated that ecological communities develop from the unique and coincidental association of individual organisms. This perceptual shift placed the focus back onto the life histories of individual organisms and how this relates to the development of community associations.[251]

The Clementsian superorganism theory was an overextended application of an idealistic form of holism.[36][107] The term «holism» was coined in 1926 by Jan Christiaan Smuts, a South African general and polarizing historical figure who was inspired by Clements’ superorganism concept.[252][C] Around the same time, Charles Elton pioneered the concept of food chains in his classical book Animal Ecology.[82] Elton[82] defined ecological relations using concepts of food chains, food cycles, and food size, and described numerical relations among different functional groups and their relative abundance. Elton’s ‘food cycle’ was replaced by ‘food web’ in a subsequent ecological text.[253] Alfred J. Lotka brought in many theoretical concepts applying thermodynamic principles to ecology.

In 1942, Raymond Lindeman wrote a landmark paper on the trophic dynamics of ecology, which was published posthumously after initially being rejected for its theoretical emphasis. Trophic dynamics became the foundation for much of the work to follow on energy and material flow through ecosystems. Robert MacArthur advanced mathematical theory, predictions, and tests in ecology in the 1950s, which inspired a resurgent school of theoretical mathematical ecologists.[235][254][255] Ecology also has developed through contributions from other nations, including Russia’s Vladimir Vernadsky and his founding of the biosphere concept in the 1920s[256] and Japan’s Kinji Imanishi and his concepts of harmony in nature and habitat segregation in the 1950s.[257] Scientific recognition of contributions to ecology from non-English-speaking cultures is hampered by language and translation barriers.[256]

This whole chain of poisoning, then, seems to rest on a base of minute plants which must have been the original concentrators. But what of the opposite end of the food chain—the human being who, in probable ignorance of all this sequence of events, has rigged his fishing tackle, caught a string of fish from the waters of Clear Lake, and taken them home to fry for his supper?

Rachel Carson (1962)[258]: 48 

Ecology surged in popular and scientific interest during the 1960–1970s environmental movement. There are strong historical and scientific ties between ecology, environmental management, and protection.[235] The historical emphasis and poetic naturalistic writings advocating the protection of wild places by notable ecologists in the history of conservation biology, such as Aldo Leopold and Arthur Tansley, have been seen as far removed from urban centres where, it is claimed, the concentration of pollution and environmental degradation is located.[235][259] Palamar (2008)[259] notes an overshadowing by mainstream environmentalism of pioneering women in the early 1900s who fought for urban health ecology (then called euthenics)[248] and brought about changes in environmental legislation. Women such as Ellen Swallow Richards and Julia Lathrop, among others, were precursors to the more popularized environmental movements after the 1950s.

In 1962, marine biologist and ecologist Rachel Carson’s book Silent Spring helped to mobilize the environmental movement by alerting the public to toxic pesticides, such as DDT, bioaccumulating in the environment. Carson used ecological science to link the release of environmental toxins to human and ecosystem health. Since then, ecologists have worked to bridge their understanding of the degradation of the planet’s ecosystems with environmental politics, law, restoration, and natural resources management.[22][235][259][260]

See also[edit]

  • Carrying capacity
  • Chemical ecology
  • Climate justice
  • Circles of Sustainability
  • Cultural ecology
  • Dialectical naturalism
  • Ecological death
  • Ecological psychology
  • Ecology movement
  • Ecosophy
  • Ecopsychology
  • Human ecology
  • Industrial ecology
  • Information ecology
  • Landscape ecology
  • Natural resource
  • Normative science
  • Philosophy of ecology
  • Political ecology
  • Theoretical ecology
  • Sensory ecology
  • Sexecology
  • Spiritual ecology
  • Sustainable development
Lists
  • Glossary of ecology
  • Index of biology articles
  • List of ecologists
  • Outline of biology
  • Terminology of ecology

Notes[edit]

  1. ^

    In Ernst Haeckel’s (1866) footnote where the term ecology originates, he also gives attribute to Ancient Greek: χώρας, romanized: khōrā, lit. ‘χωρα’, meaning «dwelling place, distributional area» —quoted from Stauffer (1957).

  2. ^

    This is a copy of Haeckel’s original definition (Original: Haeckel, E. (1866) Generelle Morphologie der Organismen. Allgemeine Grundzige der organischen Formen- Wissenschaft, mechanisch begriindet durch die von Charles Darwin reformirte Descendenz-Theorie. 2 vols. Reimer, Berlin.) translated and quoted from Stauffer (1957).

  3. ^

    Foster & Clark (2008) note how Smut’s holism contrasts starkly against his racial political views as the father of apartheid.

  4. ^

    First introduced in MacArthur & Wilson’s (1967) book of notable mention in the history and theoretical science of ecology, The Theory of Island Biogeography.

  5. ^

    Aristotle wrote about this concept in Metaphysics (Quoted from The Internet Classics Archive translation by W. D. Ross. Book VIII, Part 6): «To return to the difficulty which has been stated with respect both to definitions and to numbers, what is the cause of their unity? In the case of all things which have several parts and in which the totality is not, as it were, a mere heap, but the whole is something besides the parts, there is a cause; for even in bodies contact is the cause of unity in some cases and in others viscosity or some other such quality.»

References[edit]

  1. ^ S. E. Kingsland, «Foundational Papers: Defining Ecology as a Science,» in L. A. Real and J. H. Brown, eds., Foundations of Ecology: Classic Papers with Commentaries. Chicago: U of Chicago Press, 1991. Pages 1-2.
  2. ^ Stadler, B.; Michalzik, B.; Müller, T. (1998). «Linking aphid ecology with nutrient fluxes in a coniferous forest». Ecology. 79 (5): 1514–1525. doi:10.1890/0012-9658(1998)079[1514:LAEWNF]2.0.CO;2. ISSN 0012-9658.
  3. ^ Humphreys, N. J.; Douglas, A. E. (1997). «Partitioning of symbiotic bacteria between generations of an insect: a quantitative study of a Buchnera sp. in the pea aphid (Acyrthosiphon pisum) reared at different temperatures». Applied and Environmental Microbiology. 63 (8): 3294–3296. Bibcode:1997ApEnM..63.3294H. doi:10.1128/AEM.63.8.3294-3296.1997. PMC 1389233. PMID 16535678.
  4. ^ Liere, Heidi; Jackson, Doug; Vandermeer, John; Wilby, Andrew (20 September 2012). «Ecological Complexity in a Coffee Agroecosystem: Spatial Heterogeneity, Population Persistence and Biological Control». PLOS ONE. 7 (9): e45508. Bibcode:2012PLoSO…745508L. doi:10.1371/journal.pone.0045508. PMC 3447771. PMID 23029061.
  5. ^ a b c d e f g h i j k l Odum, E. P.; Barrett, G. W. (2005). Fundamentals of Ecology. Brooks Cole. p. 598. ISBN 978-0-534-42066-6. Archived from the original on 28 July 2020. Retrieved 6 January 2020.
  6. ^ Steward T.A. Pickett; Jurek Kolasa; Clive G. Jones (1994). Ecological Understanding: The Nature of Theory and the Theory of Nature. San Diego: Academic Press. ISBN 978-0-12-554720-8.
  7. ^ a b O’Neill, D. L.; Deangelis, D. L.; Waide, J. B.; Allen, T. F. H. (1986). A Hierarchical Concept of Ecosystems. Princeton University Press. p. 253. ISBN 0-691-08436-X.
  8. ^ Nachtomy, Ohad; Shavit, Ayelet; Smith, Justin (2002). «Leibnizian organisms, nested individuals, and units of selection». Theory in Biosciences. 121 (2): 205–230. doi:10.1007/s12064-002-0020-9. S2CID 23760946.
  9. ^ a b Holling, C. S. (2004). «Understanding the complexity of economic, ecological, and social systems». Ecosystems. 4 (5): 390–405. doi:10.1007/s10021-001-0101-5. S2CID 7432683.
  10. ^ Levin, S. A. (1999). Fragile Dominion: Complexity and the Commons. Reading, MA: Perseus Books. ISBN 978-0-7382-0319-5. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  11. ^ Noss, R. F.; Carpenter, A. Y. (1994). Saving Nature’s Legacy: Protecting and Restoring Biodiversity. Island Press. p. 443. ISBN 978-1-55963-248-5. Archived from the original on 1 August 2020. Retrieved 27 June 2015.
  12. ^ Noss, R. F. (1990). «Indicators for monitoring biodiversity: A hierarchical approach». Conservation Biology. 4 (4): 355–364. doi:10.1111/j.1523-1739.1990.tb00309.x. JSTOR 2385928.
  13. ^ a b Scholes, R. J.; Mace, G. M.; Turner, W.; Geller, G. N.; Jürgens, N.; Larigauderie, A.; Muchoney, D.; Walther, B. A.; Mooney, H. A. (2008). «Toward a global biodiversity observing system» (PDF). Science. 321 (5892): 1044–1045. doi:10.1126/science.1162055. PMID 18719268. S2CID 206514712. Archived from the original (PDF) on 10 July 2011.
  14. ^ a b Cardinale, Bradley J.; Duffy, J. Emmett; Gonzalez, Andrew; Hooper, David U.; Perrings, Charles; Venail, Patrick; Narwani, Anita; Mace, Georgina M.; Tilman, David; Wardle, David A.; Kinzig, Ann P.; Daily, Gretchen C.; Loreau, Michel; Grace, James B.; Larigauderie, Anne; Srivastava, Diane S.; Naeem, Shahid; Gonzalez, Andrew; Hooper, David U.; Perrings, Charles; Venail, Patrick; Narwani, Anita; Mace, Georgina M.; Tilman, David; Wardle, David A.; Kinzig, Ann P.; Daily, Gretchen C.; Loreau, Michel; Grace, James B.; Larigauderie, Anne; Srivastava, Diane S.; Naeem, Shahid (6 June 2012). «Biodiversity loss and its impact on humanity» (PDF). Nature. 486 (7401): 59–67. Bibcode:2012Natur.486…59C. doi:10.1038/nature11148. PMID 22678280. S2CID 4333166. Archived (PDF) from the original on 21 September 2017. Retrieved 10 August 2019.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. ^ Wilson, E. O. (2000). «A global biodiversity map». Science. 289 (5488): 2279. PMID 11041790.
  16. ^ Purvis, A.; Hector, A. (2000). «Getting the measure of biodiversity» (PDF). Nature. 405 (6783): 212–218. doi:10.1038/35012221. PMID 10821281. S2CID 4333920. Archived from the original (PDF) on 28 April 2014.
  17. ^ Ostfeld, R. S. (2009). «Biodiversity loss and the rise of zoonotic pathogens». Clinical Microbiology and Infection. 15 (s1): 40–43. doi:10.1111/j.1469-0691.2008.02691.x. PMID 19220353.
  18. ^ Tierney, Geraldine L.; Faber-Langendoen, Don; Mitchell, Brian R.; Shriver, W. Gregory; Gibbs, James P. (2009). «Monitoring and evaluating the ecological integrity of forest ecosystems» (PDF). Frontiers in Ecology and the Environment. 7 (6): 308–316. doi:10.1890/070176. Archived from the original (PDF) on 29 December 2010. Retrieved 1 February 2010.
  19. ^ Ceballos, G.; Ehrlich, P. R. (2002). «Mammal population losses and the extinction crisis» (PDF). Science. 296 (5569): 904–907. Bibcode:2002Sci…296..904C. doi:10.1126/science.1069349. PMID 11988573. S2CID 32115412. Archived from the original (PDF) on 20 July 2011. Retrieved 16 March 2010.
  20. ^ Palumbi, Stephen R.; Sandifer, Paul A.; Allan, J. David; Beck, Michael W.; Fautin, Daphne G.; Fogarty, Michael J.; Halpern, Benjamin S.; Incze, Lewis S.; Leong, Jo-Ann; et al. (2009). «Managing for ocean biodiversity to sustain marine ecosystem services» (PDF). Frontiers in Ecology and the Environment. 7 (4): 204–211. doi:10.1890/070135. hdl:1808/13308. Archived from the original (PDF) on 11 June 2010.
  21. ^ Wilcove, D. S.; Wikelski, M. (2008). «Going, going, gone: Is animal migration disappearing». PLOS Biology. 6 (7): e188. doi:10.1371/journal.pbio.0060188. PMC 2486312. PMID 18666834.
  22. ^ a b c Hammond, H. (2009). Maintaining Whole Systems on the Earth’s Crown: Ecosystem-based Conservation Planning for the Boreal Forest. Slocan Park, BC: Silva Forest Foundation. p. 380. ISBN 978-0-9734779-0-0. Archived from the original on 5 December 2009. Retrieved 31 January 2010.
  23. ^ Kiessling, W.; Simpson, C.; Foote, M. (2009). «Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic» (PDF). Science. 327 (5962): 196–198. Bibcode:2010Sci…327..196K. doi:10.1126/science.1182241. PMID 20056888. S2CID 206523585. Archived (PDF) from the original on 12 January 2011. Retrieved 12 April 2020.
  24. ^ a b c Whittaker, R. H.; Levin, S. A.; Root, R. B. (1973). «Niche, habitat, and ecotope» (PDF). The American Naturalist. 107 (955): 321–338. doi:10.1086/282837. S2CID 84504783. Archived from the original (PDF) on 5 September 2012.
  25. ^ Beyer, Hawthorne, L.; Haydon, Daniel, T.; Morales, Juan M.; Frair, Jacqueline L.; Hebblewhite, Mark; Mitchell, Michael; Matthiopoulos, Jason (2010). «The interpretation of habitat preference metrics under use–availability designs». Philosophical Transactions of the Royal Society B. 365 (1550): 2245–2254. doi:10.1098/rstb.2010.0083. PMC 2894962. PMID 20566501.
  26. ^ Schoener, T. W. (1975). «Presence and absence of habitat shift in some widespread lizard species». Ecological Monographs. 45 (3): 233–258. doi:10.2307/1942423. JSTOR 1942423.
  27. ^ Vitt, L. J.; Caldwell, J. P.; Zani, P. A.; Titus, T. A. (1997). «The role of habitat shift in the evolution of lizard morphology: Evidence from tropical Tropidurus«. Proceedings of the National Academy of Sciences. 94 (8): 3828–3832. Bibcode:1997PNAS…94.3828V. doi:10.1073/pnas.94.8.3828. PMC 20526. PMID 9108063.
  28. ^ a b c Laland, K. N.; Odling-Smee, F. J.; Feldman, M. W. (1999). «Evolutionary consequences of niche construction and their implications for ecology». Proceedings of the National Academy of Sciences. 96 (18): 10242–10247. Bibcode:1999PNAS…9610242L. doi:10.1073/pnas.96.18.10242. PMC 17873. PMID 10468593.
  29. ^ a b Hughes, D. P.; Pierce, N. E.; Boomsma, J. J. (2008). «Social insect symbionts: evolution in homeostatic fortresses» (PDF). Trends in Ecology & Evolution. 23 (12): 672–677. doi:10.1016/j.tree.2008.07.011. PMID 18951653. Archived from the original (PDF) on 6 June 2011. Retrieved 28 January 2010.
  30. ^ a b c Wiens, J. J.; Graham, C. H. (2005). «Niche conservatism: Integrating evolution, ecology, and conservation biology» (PDF). Annual Review of Ecology, Evolution, and Systematics. 36: 519–539. doi:10.1146/annurev.ecolsys.36.102803.095431. Archived from the original (PDF) on 24 October 2012.
  31. ^ Hutchinson, G. E. (1957). A Treatise on Limnology. New York, NY: Wiley. p. 1015. ISBN 0-471-42572-9.
  32. ^ a b Hutchinson, G. E. (1957). «Concluding remarks». Cold Spring Harbor Symposia on Quantitative Biology. 22 (797): 415–427. doi:10.1101/SQB.1957.022.01.039.
  33. ^ a b c Begon, M.; Townsend, C. R.; Harper, J. L. (2005). Ecology: From Individuals to Ecosystems (4th ed.). Wiley-Blackwell. p. 752. ISBN 1-4051-1117-8. Archived from the original on 30 October 2013. Retrieved 14 December 2010.
  34. ^ D. L., Hardesty (1975). «The niche concept: suggestions for its use in human ecology». Human Ecology. 3 (2): 71–85. doi:10.1007/BF01552263. JSTOR 4602315. S2CID 84328940.
  35. ^ Pearman, P. B.; Guisan, A.; Broennimann, O.; Randin, C. F. (2008). «Niche dynamics in space and time». Trends in Ecology & Evolution. 23 (3): 149–158. doi:10.1016/j.tree.2007.11.005. PMID 18289716.
  36. ^ a b c d e Levins, R.; Lewontin, R. (1980). «Dialectics and reductionism in ecology» (PDF). Synthese. 43: 47–78. doi:10.1007/bf00413856. S2CID 46984334. Archived from the original (PDF) on 10 May 2013.
  37. ^ Hardin, G. (1960). «The competitive exclusion principal». Science. 131 (3409): 1292–1297. Bibcode:1960Sci…131.1292H. doi:10.1126/science.131.3409.1292. PMID 14399717. S2CID 18542809.
  38. ^ Scheffer, M.; van Nes, E. H. (2006). «Self-organized similarity, the evolutionary emergence of groups of similar species». Proceedings of the National Academy of Sciences. 103 (16): 6230–6235. Bibcode:2006PNAS..103.6230S. doi:10.1073/pnas.0508024103. PMC 1458860. PMID 16585519.
  39. ^ Hastings, Alan; Byers, James E.; Crooks, Jeffrey A.; Cuddington, Kim; Jones, Clive G.; Lambrinos, John G.; Talley, Theresa S.; Wilson, William G. (2007). «Ecosystem engineering in space and time». Ecology Letters. 10 (2): 153–164. doi:10.1111/j.1461-0248.2006.00997.x. PMID 17257103. S2CID 44870405.
  40. ^ Jones, Clive G.; Lawton, John H.; Shachak, Moshe (1994). «Organisms as ecosystem engineers». Oikos. 69 (3): 373–386. doi:10.2307/3545850. JSTOR 3545850.
  41. ^ Wright, J. P.; Jones, C.G. (2006). «The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges». BioScience. 56 (3): 203–209. doi:10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2. ISSN 0006-3568.
  42. ^ Palmer, M.; White, P. S. (1994). «On the existence of ecological communities» (PDF). Journal of Vegetation Sciences. 5 (2): 279–282. doi:10.2307/3236162. JSTOR 3236162. Archived from the original (PDF) on 5 September 2012.
  43. ^ Prentice; I. C.; Harrison, S. P.; Leemans, R.; Monserud, R. A.; Solomon, A. M. (1992). «Special paper: A global biome model based on plant physiology and dominance, soil properties and climate» (PDF). Journal of Biogeography. 19 (2): 117–134. doi:10.2307/2845499. JSTOR 2845499.
  44. ^ Turnbaugh, Peter J.; Ley, Ruth E.; Hamady, Micah; Fraser-Liggett, Claire M.; Knight, Rob; Gordon, Jeffrey I. (2007). «The human microbiome project». Nature. 449 (7164): 804–810. Bibcode:2007Natur.449..804T. doi:10.1038/nature06244. PMC 3709439. PMID 17943116.
  45. ^ DeLong, E. F. (2009). «The microbial ocean from genomes to biomes» (PDF). Nature. 459 (7244): 200–206. Bibcode:2009Natur.459..200D. doi:10.1038/nature08059. hdl:1721.1/69838. PMID 19444206. S2CID 205216984. Archived from the original (PDF) on 18 July 2011. Retrieved 14 January 2010.
  46. ^ Igamberdiev, Abir U.; Lea, P. J. (2006). «Land plants equilibrate O2 and CO2 concentrations in the atmosphere» (PDF). Photosynthesis Research. 87 (2): 177–194. doi:10.1007/s11120-005-8388-2. PMID 16432665. S2CID 10709679. Archived from the original (PDF) on 3 March 2016.
  47. ^ Lovelock, J.; Margulis, Lynn (1973). «Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis». Tellus. 26 (1–2): 2–10. Bibcode:1974Tell…26….2L. doi:10.1111/j.2153-3490.1974.tb01946.x. S2CID 129803613.
  48. ^ a b c Lovelock, J. (2003). «The living Earth». Nature. 426 (6968): 769–770. Bibcode:2003Natur.426..769L. doi:10.1038/426769a. PMID 14685210. S2CID 30308855.
  49. ^ Waples, R. S.; Gaggiotti, O. (2006). «What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity». Molecular Ecology. 15 (6): 1419–1439. doi:10.1111/j.1365-294X.2006.02890.x. PMID 16629801. S2CID 9715923. Archived from the original on 25 October 2019. Retrieved 10 August 2019.
  50. ^ a b c Turchin, P. (2001). «Does population ecology have general laws?». Oikos. 94 (1): 17–26. doi:10.1034/j.1600-0706.2001.11310.x. S2CID 27090414.
  51. ^ a b Vandermeer, J. H.; Goldberg, D. E. (2003). Population Ecology: First Principles. Woodstock, Oxfordshire: Princeton University Press. ISBN 0-691-11440-4.
  52. ^ Berryman, A. A. (1992). «The origins and evolution of predator-prey theory». Ecology. 73 (5): 1530–1535. doi:10.2307/1940005. JSTOR 1940005. S2CID 84321947.
  53. ^ Anderson, D. R.; Burnham, K. P.; Thompson, W. L. (2000). «Null hypotheses testing: Problems, prevalence, and an alternative» (PDF). J. Wildl. Manage. 64 (4): 912–923. doi:10.2307/3803199. JSTOR 3803199. Archived from the original (PDF) on 2 June 2013. Retrieved 4 August 2012.
  54. ^ Johnson, J. B.; Omland, K. S. (2004). «Model selection in ecology and evolution» (PDF). Trends in Ecology and Evolution. 19 (2): 101–108. CiteSeerX 10.1.1.401.777. doi:10.1016/j.tree.2003.10.013. PMID 16701236. Archived (PDF) from the original on 14 October 2012.
  55. ^ Levins, R. (1969). «Some demographic and genetic consequences of environmental heterogeneity for biological control». Bulletin of the Entomological Society of America. 15 (3): 237–240. doi:10.1093/besa/15.3.237. ISBN 978-0-231-12680-9. Archived from the original on 8 April 2022. Retrieved 19 November 2020.
  56. ^ Levins, R. (1970). «Extinction». In Gerstenhaber, M. (ed.). Some Mathematical Questions in Biology. pp. 77–107. ISBN 978-0-8218-1152-8. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  57. ^ Smith, M. A.; Green, D. M. (2005). «Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations?». Ecography. 28 (1): 110–128. doi:10.1111/j.0906-7590.2005.04042.x.
  58. ^ Hanski, I. (1998). «Metapopulation dynamics» (PDF). Nature. 396 (6706): 41–49. Bibcode:1998Natur.396…41H. doi:10.1038/23876. S2CID 4405264. Archived from the original (PDF) on 31 December 2010.
  59. ^ Nebel, S. (2010). «Animal migration». Nature Education Knowledge. 10 (1): 29. Archived from the original on 16 July 2011.
  60. ^ Clark, J. S.; Fastie, C.; Hurtt, G.; Jackson, S. T.; Johnson, C.; King, G. A.; Lewis, M.; Lynch, J.; Pacala, S.; et al. (1998). «Reid’s paradox of rapid plant migration» (PDF). BioScience. 48 (1): 13–24. doi:10.2307/1313224. JSTOR 1313224. Archived (PDF) from the original on 6 July 2011.
  61. ^ Dingle, H. (18 January 1996). Migration: The Biology of Life on the Move. Oxford University Press. p. 480. ISBN 0-19-509723-8. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  62. ^ Hanski, I.; Gaggiotti, O. E., eds. (2004). Ecology, Genetics and Evolution of Metapopulations. Burlington, MA: Elsevier Academic Press. ISBN 0-12-323448-4. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  63. ^ MacKenzie; D.I. (2006). Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. London, UK: Elsevier Academic Press. p. 324. ISBN 978-0-12-088766-8. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  64. ^ Johnson, M. T.; Strinchcombe, J. R. (2007). «An emerging synthesis between community ecology and evolutionary biology». Trends in Ecology and Evolution. 22 (5): 250–257. doi:10.1016/j.tree.2007.01.014. PMID 17296244.
  65. ^ a b Tansley, A. G. (1935). «The use and abuse of vegetational concepts and terms» (PDF). Ecology. 16 (3): 284–307. doi:10.2307/1930070. JSTOR 1930070. Archived from the original (PDF) on 26 July 2011.
  66. ^ Brinson, M. M.; Lugo, A. E.; Brown, S (1981). «Primary Productivity, Decomposition and Consumer Activity in Freshwater Wetlands». Annual Review of Ecology and Systematics. 12: 123–161. doi:10.1146/annurev.es.12.110181.001011.
  67. ^ Marsh, G. P. (1864). Man and Nature: Physical Geography as Modified by Human Action. Cambridge, MA: Belknap Press. p. 560.
  68. ^ O’Neil, R. V. (2001). «Is it time to bury the ecosystem concept? (With full military honors, of course!)» (PDF). Ecology. 82 (12): 3275–3284. doi:10.1890/0012-9658(2001)082[3275:IITTBT]2.0.CO;2. ISSN 0012-9658. Archived from the original (PDF) on 19 May 2011. Retrieved 20 June 2011.
  69. ^ Levin, S. A. (1998). «Ecosystems and the biosphere as complex adaptive systems». Ecosystems. 1 (5): 431–436. CiteSeerX 10.1.1.83.6318. doi:10.1007/s100219900037. S2CID 29793247.
  70. ^ Pimm, S. (2002). Food Webs. University of Chicago Press. p. 258. ISBN 978-0-226-66832-1. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  71. ^ a b Pimm, S. L.; Lawton, J. H.; Cohen, J. E. (1991). «Food web patterns and their consequences» (PDF). Nature. 350 (6320): 669–674. Bibcode:1991Natur.350..669P. doi:10.1038/350669a0. S2CID 4267587. Archived from the original (PDF) on 10 June 2010.
  72. ^ Worm, B.; Duffy, J. E. (2003). «Biodiversity, productivity and stability in real food webs». Trends in Ecology and Evolution. 18 (12): 628–632. CiteSeerX 10.1.1.322.7255. doi:10.1016/j.tree.2003.09.003.
  73. ^ McCann, K. (2007). «Protecting biostructure». Nature. 446 (7131): 29. Bibcode:2007Natur.446…29M. doi:10.1038/446029a. PMID 17330028. S2CID 4428058.
  74. ^ Wilbur, H. W. (1997). «Experimental ecology of food webs: Complex systems in temporary ponds» (PDF). Ecology. 78 (8): 2279–2302. doi:10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2. ISSN 0012-9658. Archived from the original (PDF) on 19 May 2011. Retrieved 27 November 2010.
  75. ^ Emmerson, M.; Yearsley, J. M. (2004). «Weak interactions, omnivory and emergent food-web properties» (PDF). Philosophical Transactions of the Royal Society B. 271 (1537): 397–405. doi:10.1098/rspb.2003.2592. PMC 1691599. PMID 15101699. Archived (PDF) from the original on 6 June 2011.
  76. ^ Krause, A. E.; Frank, K. A.; Mason, D. M.; Ulanowicz, R. E.; Taylor, W. W. (2003). «Compartments revealed in food-web structure» (PDF). Nature. 426 (6964): 282–285. Bibcode:2003Natur.426..282K. doi:10.1038/nature02115. hdl:2027.42/62960. PMID 14628050. S2CID 1752696. Archived from the original (PDF) on 13 August 2011. Retrieved 4 June 2011.
  77. ^ Egerton, Frank N. (2007). «Understanding food chains and food webs, 1700–1970». Bulletin of the Ecological Society of America. 88: 50–69. doi:10.1890/0012-9623(2007)88[50:UFCAFW]2.0.CO;2. ISSN 0012-9623.
  78. ^ Shurin, J. B.; Gruner, D. S.; Hillebrand, H. (2006). «All wet or dried up? Real differences between aquatic and terrestrial food webs». Proceedings of the Royal Society B. 273 (1582): 1–9. doi:10.1098/rspb.2005.3377. PMC 1560001. PMID 16519227.
  79. ^ Edwards, J.; Fraser, K. (1983). «Concept maps as reflectors of conceptual understanding». Research in Science Education. 13 (1): 19–26. Bibcode:1983RScEd..13…19E. doi:10.1007/BF02356689. S2CID 144922522.
  80. ^ Hairston, N. G. Jr.; Hairston, N. G. Sr. (1993). «Cause-effect relationships in energy flow, trophic structure, and interspecific interactions» (PDF). The American Naturalist. 142 (3): 379–411. doi:10.1086/285546. hdl:1813/57238. S2CID 55279332. Archived from the original (PDF) on 20 July 2011.
  81. ^ Duffy, J. Emmett; Cardinale, Bradley J.; France, Kristin E.; McIntyre, Peter B.; Thébault, Elisa; Loreau, Michel (2007). «The functional role of biodiversity in ecosystems: incorporating trophic complexity». Ecology Letters. 10 (6): 522–538. doi:10.1111/j.1461-0248.2007.01037.x. PMID 17498151. Archived from the original on 5 March 2020. Retrieved 7 December 2019.
  82. ^ a b c Elton, C. S. (1927). Animal Ecology. London, UK.: Sidgwick and Jackson. ISBN 0-226-20639-4.
  83. ^ Davic, R. D. (2003). «Linking keystone species and functional groups: a new operational definition of the keystone species concept» (PDF). Conservation Ecology. 7 (1): r11. doi:10.5751/ES-00502-0701r11. hdl:10535/2966. Archived (PDF) from the original on 30 July 2020. Retrieved 24 September 2019.
  84. ^ Oksanen, L. (1991). «Trophic levels and trophic dynamics: A consensus emerging?». Trends in Ecology and Evolution. 6 (2): 58–60. doi:10.1016/0169-5347(91)90124-G. PMID 21232425.
  85. ^ Loehle, C.; Pechmann, Joseph H. K. (1988). «Evolution: The missing ingredient in systems ecology». The American Naturalist. 132 (9): 884–899. doi:10.1086/284895. JSTOR 2462267. S2CID 85120393.
  86. ^ Ulanowicz, R. E.; Kemp, W. Michael (1979). «Toward canonical trophic aggregations» (PDF). The American Naturalist. 114 (6): 871–883. doi:10.1086/283534. hdl:1834/19829. JSTOR 2460557. S2CID 85371147. Archived (PDF) from the original on 1 November 2018. Retrieved 10 August 2019.
  87. ^ Li, B. (2000). «Why is the holistic approach becoming so important in landscape ecology?». Landscape and Urban Planning. 50 (1–3): 27–41. doi:10.1016/S0169-2046(00)00078-5.
  88. ^ Polis, G. A.; Strong, D. R. (1996). «Food web complexity and community dynamics» (PDF). The American Naturalist. 147 (5): 813–846. doi:10.1086/285880. S2CID 85155900. Archived from the original (PDF) on 20 July 2011.
  89. ^ Thompson, R. M.; Hemberg, M.; Starzomski, B. M.; Shurin, J. B. (2007). «Trophic levels and trophic tangles: The prevalence of omnivory in real food webs» (PDF). Ecology. 88 (3): 612–617. doi:10.1890/05-1454. PMID 17503589. Archived from the original (PDF) on 15 August 2011.
  90. ^ Fischer, J.; Lindenmayer, D. B.; Manning, A. D. (2006). «Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes» (PDF). Frontiers in Ecology and the Environment. 4 (2): 80–86. doi:10.1890/1540-9295(2006)004[0080:BEFART]2.0.CO;2. ISSN 1540-9295. Archived from the original (PDF) on 6 July 2011. Retrieved 2 February 2010.
  91. ^ Libralato, S.; Christensen, V.; Pauly, D. (2006). «A method for identifying keystone species in food web models» (PDF). Ecological Modelling. 195 (3–4): 153–171. doi:10.1016/j.ecolmodel.2005.11.029. Archived from the original (PDF) on 19 May 2012.
  92. ^ Paine, R. T. (January 1969). «A Note on Trophic Complexity and Community Stability». The American Naturalist. 103 (929): 91–93. doi:10.1086/282586. ISSN 0003-0147. S2CID 83780992.
  93. ^ a b Mills, L. S.; Soule, M. E.; Doak, D. F. (1993). «The keystone-species concept in ecology and conservation». BioScience. 43 (4): 219–224. doi:10.2307/1312122. JSTOR 1312122. S2CID 85204808.
  94. ^ Anderson, P. K. (1995). «Competition, predation, and the evolution and extinction of Steller’s sea cow, Hydrodamalis gigas«. Marine Mammal Science. 11 (3): 391–394. doi:10.1111/j.1748-7692.1995.tb00294.x.
  95. ^ Polis, G. A.; Sears, Anna L. W.; Huxel, Gary R.; Strong, Donald R.; Maron, John (2000). «When is a trophic cascade a trophic cascade?» (PDF). Trends in Ecology and Evolution. 15 (11): 473–475. doi:10.1016/S0169-5347(00)01971-6. PMID 11050351. Archived from the original (PDF) on 7 December 2010. Retrieved 28 September 2009.
  96. ^ Novikoff, A. B. (1945). «The concept of integrative levels and biology» (PDF). Science. 101 (2618): 209–215. Bibcode:1945Sci…101..209N. doi:10.1126/science.101.2618.209. PMID 17814095. Archived from the original (PDF) on 15 May 2011.
  97. ^ Schneider, D. D. (2001). «The rise of the concept of scale in ecology» (PDF). BioScience. 51 (7): 545–553. doi:10.1641/0006-3568(2001)051[0545:TROTCO]2.0.CO;2. ISSN 0006-3568. Archived (PDF) from the original on 3 March 2016.
  98. ^ Molnar, J.; Marvier, M.; Kareiva, P. (2004). «The sum is greater than the parts». Conservation Biology. 18 (6): 1670–1671. doi:10.1111/j.1523-1739.2004.00l07.x.
  99. ^ Loehle, C. (2004). «Challenges of ecological complexity». Ecological Complexity. 1 (1): 3–6. doi:10.1016/j.ecocom.2003.09.001.
  100. ^ a b Odum, E. P. (1977). «The emergence of ecology as a new integrative discipline». Science. 195 (4284): 1289–1293. Bibcode:1977Sci…195.1289O. doi:10.1126/science.195.4284.1289. PMID 17738398. S2CID 36862823.
  101. ^ Scheffer, M.; Carpenter, S.; Foley, J. A.; Walker, B.; Walker, B. (2001). «Catastrophic shifts in ecosystems» (PDF). Nature. 413 (6856): 591–596. Bibcode:2001Natur.413..591S. doi:10.1038/35098000. PMID 11595939. S2CID 8001853. Archived from the original (PDF) on 20 July 2011. Retrieved 4 June 2011.
  102. ^ «Welcome to ILTER». International Long Term Ecological Research. Archived from the original on 5 March 2010. Retrieved 16 March 2010.
  103. ^ Silverton, Jonathan; Poulton, Paul; Johnston, Edward; Edwards, Grant; Heard, Matthew; Biss, Pamela M. (2006). «The Park Grass Experiment 1856–2006: Its contribution to ecology». Journal of Ecology. 94 (4): 801–814. doi:10.1111/j.1365-2745.2006.01145.x.
  104. ^ «Hubbard Brook Ecosystem Study Front Page». Archived from the original on 24 March 2010. Retrieved 16 March 2010.
  105. ^ a b c d Liu, J.; Dietz, Thomas; Carpenter, Stephen R.; Folke, Carl; Alberti, Marina; Redman, Charles L.; Schneider, Stephen H.; Ostrom, Elinor; Pell, Alice N.; et al. (2009). «Coupled human and natural systems» (PDF). Ambio: A Journal of the Human Environment. 36 (8): 639–649. doi:10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2. ISSN 0044-7447. PMID 18240679. S2CID 18167083. Archived from the original (PDF) on 9 August 2011.
  106. ^ Mikkelson, G. M. (2010). «Part-whole relationships and the unity of ecology» (PDF). In Skipper, R. A.; Allen, C.; Ankeny, R.; Craver, C. F.; Darden, L.; Richardson, R.C. (eds.). Philosophy Across the Life Sciences. Cambridge, MA: MIT Press. Archived (PDF) from the original on 11 September 2010.
  107. ^ a b Wilson, D. S. (1988). «Holism and reductionism in evolutionary ecology». Oikos. 53 (2): 269–273. doi:10.2307/3566073. JSTOR 3566073.
  108. ^ Miles, D. B.; Dunham, A. E. (1993). «Historical perspectives in ecology and evolutionary biology: The use of phylogenetic comparative analyses». Annual Review of Ecology and Systematics. 24: 587–619. doi:10.1146/annurev.es.24.110193.003103.
  109. ^ Craze, P., ed. (2 August 2012). «Trends in Ecology and Evolution». Cell Press, Elsevier, Inc. Archived from the original on 24 July 2009. Retrieved 9 December 2009.
  110. ^ a b c d e f g h i Allee, W. C.; Park, O.; Emerson, A. E.; Park, T.; Schmidt, K. P. (1949). Principles of Animal Ecology. W. B. Sunders, Co. p. 837. ISBN 0-7216-1120-6.
  111. ^ a b c d e Rickleffs, Robert, E. (1996). The Economy of Nature. University of Chicago Press. p. 678. ISBN 0-7167-3847-3.
  112. ^ Yoshida, T (2003). «Rapid evolution drives ecological dynamics in a predator–prey system». Nature. Nature Publishing Group. 424 (6946): 303–306. Bibcode:2003Natur.424..303Y. doi:10.1038/nature01767. PMID 12867979. S2CID 4425455.
  113. ^ Stuart-Fox, D.; Moussalli, A. (2008). «Selection for social signalling drives the evolution of chameleon colour change». PLOS Biology. 6 (1): e25. doi:10.1371/journal.pbio.0060025. PMC 2214820. PMID 18232740.
  114. ^ Karban, R. (2008). «Plant behaviour and communication». Ecology Letters. 11 (7): 727–739. doi:10.1111/j.1461-0248.2008.01183.x. PMID 18400016.
  115. ^ Tinbergen, N. (1963). «On aims and methods of ethology» (PDF). Zeitschrift für Tierpsychologie. 20 (4): 410–433. doi:10.1111/j.1439-0310.1963.tb01161.x. Archived (PDF) from the original on 9 June 2011.
  116. ^ Hamner, W. M. (1985). «The importance of ethology for investigations of marine zooplankton». Bulletin of Marine Science. 37 (2): 414–424. Archived from the original on 7 June 2011.
  117. ^ a b Strassmann, J. E.; Zhu, Y.; Queller, D. C. (2000). «Altruism and social cheating in the social amoeba Dictyostelium discoideum«. Nature. 408 (6815): 965–967. Bibcode:2000Natur.408..965S. doi:10.1038/35050087. PMID 11140681. S2CID 4307980.
  118. ^ Sakurai, K. (1985). «An attelabid weevil (Euops splendida) cultivates fungi». Journal of Ethology. 3 (2): 151–156. doi:10.1007/BF02350306. S2CID 30261494.
  119. ^ Anderson, J. D. (1961). «The courtship behaviour of Ambystoma macrodactylum croceum«. Copeia. 1961 (2): 132–139. doi:10.2307/1439987. JSTOR 1439987.
  120. ^ «Behavioral Ecology». International Society for Behavioral Ecology. Archived from the original on 10 April 2011. Retrieved 15 April 2011.
  121. ^ Gould, Stephen J.; Vrba, Elizabeth S. (1982). «Exaptation–a missing term in the science of form». Paleobiology. 8 (1): 4–15. doi:10.1017/S0094837300004310. S2CID 86436132.
  122. ^ a b c d Wilson, Edward. O. (2000). Sociobiology: The New Synthesis (25th anniversary ed.). President and Fellows of Harvard College. ISBN 978-0-674-00089-6. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  123. ^ Eastwood, R. (2004). «Successive replacement of tending ant species at aggregations of scale insects (Hemiptera: Margarodidae and Eriococcidae) on Eucalyptus in south-east Queensland» (PDF). Australian Journal of Entomology. 43: 1–4. doi:10.1111/j.1440-6055.2003.00371.x. Archived from the original (PDF) on 17 September 2011.
  124. ^ Ives, A. R.; Cardinale, B. J.; Snyder, W. E. (2004). «A synthesis of subdisciplines: Predator–prey interactions, and biodiversity and ecosystem functioning». Ecology Letters. 8 (1): 102–116. doi:10.1111/j.1461-0248.2004.00698.x.
  125. ^ Krebs, J. R.; Davies, N. B. (1993). An Introduction to Behavioural Ecology. Wiley-Blackwell. p. 432. ISBN 978-0-632-03546-5. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  126. ^ Webb, J. K.; Pike, D. A.; Shine, R. (2010). «Olfactory recognition of predators by nocturnal lizards: safety outweighs thermal benefits». Behavioral Ecology. 21 (1): 72–77. doi:10.1093/beheco/arp152. S2CID 52043639.
  127. ^ Cooper, W. E.; Frederick, W. G. (2010). «Predator lethality, optimal escape behavior, and autotomy». Behavioral Ecology. 21 (1): 91–96. doi:10.1093/beheco/arp151.
  128. ^ Kodric-Brown, A.; Brown, J. H. (1984). «Truth in advertising: The kinds of traits favored by sexual selection» (PDF). The American Naturalist. 124 (3): 309–323. doi:10.1086/284275. S2CID 28245687. Archived from the original (PDF) on 29 June 2011.
  129. ^ a b Adrian G Palacios, Francisco Bozinovic; Bozinovic (2003). «An «enactive» approach to integrative and comparative biology: Thoughts on the table». Biology Research. 36 (1): 95–99. doi:10.4067/S0716-97602003000100008. PMID 12795209.
  130. ^ Reuven Dukas (1998). «§1.3 Why study cognitive ecology?». In Reuven Dukas (ed.). Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making. University of Chicago Press. p. 4. ISBN 9780226169323. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  131. ^ Reuven Dukas; John M. Ratcliffe (2009). «Introduction». In Reuven Dukas; John M. Ratcliffe (eds.). Cognitive Ecology II. University of Chicago Press. pp. 1 ff. ISBN 9780226169378. Archived from the original on 18 March 2015. Retrieved 27 June 2015. Cognitive ecology focuses on the ecology and evolution of «cognition» defined as the neuronal processes concerned with the acquisition, retention, and use of information….we ought to rely on ecological and evolutionary knowledge for studying cognition.
  132. ^ Francisco J Varela; Evan Thompson; Eleanor Rosch (1993). The Embodied Mind: Cognitive Science and Human Experience (Paperback ed.). MIT Press. p. 174. ISBN 9780262261234. Archived from the original on 1 August 2020. Retrieved 27 June 2015.
  133. ^ Sherman, P. W.; Lacey, E. A.; Reeve, H. K.; Keller, L. (1995). «The eusociality continuum» (PDF). Behavioral Ecology. 6 (1): 102–108. doi:10.1093/beheco/6.1.102. PMID 21237927. Archived from the original (PDF) on 19 July 2011.
  134. ^ Wilson, D. S.; Wilson, E. O. (2007). «Rethinking the theoretical foundation of sociobiology». The Quarterly Review of Biology. 82 (4): 327–348. doi:10.1086/522809. PMID 18217526. S2CID 37774648.
  135. ^ Page, R. D. M. (1991). «Clocks, clades, and cospeciation: Comparing rates of evolution and timing of cospeciation events in host-parasite assemblages». Systematic Zoology. 40 (2): 188–198. doi:10.2307/2992256. JSTOR 2992256.
  136. ^ Herre, E. A.; Knowlton, N.; Mueller, U. G.; Rehner, S. A. (1999). «The evolution of mutualisms: exploring the paths between conflict and cooperation» (PDF). Trends in Ecology and Evolution. 14 (2): 49–53. doi:10.1016/S0169-5347(98)01529-8. PMID 10234251. Archived from the original (PDF) on 20 September 2009.
  137. ^ Gilbert, F. S. (1990). Insect life cycles: Genetics, evolution, and co-ordination. New York, NY: Springer-Verlag. p. 258. ISBN 0-387-19550-5. Archived from the original on 1 August 2020. Retrieved 6 January 2020.
  138. ^ Kiers, E. T.; van der Heijden, M. G. A. (2006). «Mutualistic stability in the arbuscular mycorrhizal symbiosis: Exploring hypotheses of evolutionary cooperation» (PDF). Ecology. 87 (7): 1627–1636. doi:10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2. ISSN 0012-9658. PMID 16922314. Archived from the original (PDF) on 16 October 2009. Retrieved 31 December 2009.
  139. ^ Strain, B. R. (1985). «Physiological and ecological controls on carbon sequestering in terrestrial ecosystems». Biogeochemistry. 1 (3): 219–232. doi:10.1007/BF02187200. S2CID 98479424.
  140. ^ Bronstein, J. L. (2018). «The exploitation of mutualisms». Ecology Letters. 4 (3): 277–287. doi:10.1046/j.1461-0248.2001.00218.x.
  141. ^ Irwin, Rebecca E.; Bronstein, Judith L.; Manson, Jessamyn S.; Richardson, Leif (2010). «Nectar robbing: Ecological and evolutionary perspectives». Annual Review of Ecology, Evolution, and Systematics. 41 (2): 271–292. doi:10.1146/annurev.ecolsys.110308.120330.
  142. ^ Boucher, D. H.; James, S.; Keeler, K. H. (1982). «The ecology of mutualism». Annual Review of Ecology and Systematics. 13: 315–347. doi:10.1146/annurev.es.13.110182.001531. S2CID 33027458.
  143. ^ King, K. C.; Delph, L. F.; Jokela, J.; Lively, C. M. (2009). «The geographic mosaic of sex and the Red Queen». Current Biology. 19 (17): 1438–1441. doi:10.1016/j.cub.2009.06.062. PMID 19631541. S2CID 12027050.
  144. ^ a b Parenti, L. R.; Ebach, M. C. (2009). Comparative Biogeography: Discovering and Classifying Biogeographical Patterns of a Dynamic Earth. London, England: University of California Press. ISBN 978-0-520-25945-4. Archived from the original on 11 September 2015. Retrieved 27 June 2015.
  145. ^ «Journal of Biogeography – Overview». Wiley. doi:10.1111/(ISSN)1365-2699. Archived from the original on 9 February 2013. Retrieved 16 March 2018.
  146. ^ a b MacArthur, R.; Wilson, E. O. (1967). «The Theory of Island Biogeography». Princeton, NJ: Princeton University Press.
  147. ^ a b Wiens, J. J.; Donoghue, M. J. (2004). «Historical biogeography, ecology and species richness» (PDF). Trends in Ecology and Evolution. 19 (12): 639–644. doi:10.1016/j.tree.2004.09.011. PMID 16701326. Archived (PDF) from the original on 1 June 2010.
  148. ^ Morrone, J. J.; Crisci, J. V. (1995). «Historical biogeography: Introduction to methods». Annual Review of Ecology and Systematics. 26: 373–401. doi:10.1146/annurev.es.26.110195.002105. S2CID 55258511.
  149. ^ Svenning, Jens-Christian; Condi, R. (2008). «Biodiversity in a warmer world». Science. 322 (5899): 206–207. doi:10.1126/science.1164542. PMID 18845738. S2CID 27131917.
  150. ^ Landhäusser, Simon M.; Deshaies, D.; Lieffers, V. J. (2009). «Disturbance facilitates rapid range expansion of aspen into higher elevations of the Rocky Mountains under a warming climate». Journal of Biogeography. 37 (1): 68–76. doi:10.1111/j.1365-2699.2009.02182.x. S2CID 82859453.
  151. ^ Reznick, D.; Bryant, M. J.; Bashey, F. (2002). «r- and K-selection revisited: The role of population regulation in life-history evolution» (PDF). Ecology. 83 (6): 1509–1520. doi:10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2. ISSN 0012-9658. Archived from the original (PDF) on 30 December 2010. Retrieved 27 January 2010.
  152. ^ Pianka, E. R. (1972). «r and K Selection or b and d Selection?». The American Naturalist. 106 (951): 581–588. doi:10.1086/282798. S2CID 83947445.
  153. ^ Rieseberg, L. (ed.). «Molecular Ecology». Molecular Ecology. Wiley. doi:10.1111/(ISSN)1365-294X.
  154. ^ a b Avise, J. (1994). Molecular Markers, Natural History and Evolution. Kluwer Academic Publishers. ISBN 0-412-03771-8. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  155. ^ O’Brian, E.; Dawson, R. (2007). «Context-dependent genetic benefits of extra-pair mate choice in a socially monogamous passerine» (PDF). Behavioral Ecology and Sociobiology. 61 (5): 775–782. doi:10.1007/s00265-006-0308-8. S2CID 2040456. Archived (PDF) from the original on 18 July 2011.
  156. ^ Avise, J. (2000). Phylogeography: The History and Formation of Species. President and Fellows of Harvard College. ISBN 0-674-66638-0. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  157. ^ Rachel Carson (1962). ««Silent Spring» (excerpt)». Houghton Miffin. Archived from the original on 14 October 2012. Retrieved 4 October 2012.
  158. ^ a b Young, G. L. (1974). «Human ecology as an interdisciplinary concept: A critical inquiry». Advances in Ecological Research Volume 8. Advances in Ecological Research. Vol. 8. pp. 1–105. doi:10.1016/S0065-2504(08)60277-9. ISBN 978-0-12-013908-8.
  159. ^ Gross, M. (2004). «Human geography and ecological sociology: the unfolding of human ecology, 1890 to 1930 – and beyond». Social Science History. 28 (4): 575–605. doi:10.1215/01455532-28-4-575. S2CID 233365777. Archived from the original on 26 July 2011.
  160. ^ «Millennium Ecosystem Assessment – Synthesis Report». United Nations. 2005. Archived from the original on 4 February 2010. Retrieved 4 February 2010.
  161. ^ de Groot, R. S.; Wilson, M. A.; Boumans, R. M. J. (2002). «A typology for the classification, description and valuation of ecosystem functions, goods and services» (PDF). Ecological Economics. 41 (3): 393–408. doi:10.1016/S0921-8009(02)00089-7. Archived (PDF) from the original on 9 June 2011.
  162. ^ Aguirre, A. A. (2009). «Biodiversity and human health». EcoHealth. 6: 153–156. doi:10.1007/s10393-009-0242-0. S2CID 27553272.
  163. ^ a b Grumbine, R. E. (1994). «What is ecosystem management?» (PDF). Conservation Biology. 8 (1): 27–38. doi:10.1046/j.1523-1739.1994.08010027.x. Archived from the original (PDF) on 2 May 2013.
  164. ^ Wilson, E. O. (1992). The Diversity of Life. Harvard University Press. p. 440. ISBN 978-0-674-05817-0.
  165. ^ «Boston Wetlands Ordinance». City of Boston. City of Boston. 17 July 2016. Retrieved 5 December 2022.
  166. ^ Slocombe, D. S. (1993). «Implementing ecosystem-based management». BioScience. 43 (9): 612–622. doi:10.2307/1312148. JSTOR 1312148.
  167. ^ Hobss, R. J.; Harris, J. A. (2001). «Restoration ecology: Repairing the Earth’s ecosystems in the new millennium» (PDF). Restoration Ecology. 9 (2): 239–246. doi:10.1046/j.1526-100x.2001.009002239.x. S2CID 908668. Archived (PDF) from the original on 12 May 2013.
  168. ^ Mason, H. L.; Langenheim, J. H. (1957). «Language analysis and the concept «environment»«. Ecology. 38 (2): 325–340. doi:10.2307/1931693. JSTOR 1931693.
  169. ^ Kleese, D. A. (2001). «Nature and nature in Psychology». Journal of Theoretical and Philosophical Psychology. 21: 61–79. doi:10.1037/h0091199.
  170. ^ Campbell, Neil A.; Williamson, Brad; Heyden, Robin J. (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 0-13-250882-6. Archived from the original on 2 November 2014.
  171. ^ a b c d e Kormondy, E. E. (1995). Concepts of Ecology (4th ed.). Benjamin Cummings. ISBN 0-13-478116-3.
  172. ^ a b Hughes, A. R. «Disturbance and diversity: an ecological chicken and egg problem». Nature Education Knowledge. 1 (8): 26. Archived from the original on 5 December 2010.
  173. ^ Levin, S. A. (1992). «The problem of pattern and scale in ecology: The Robert H. MacArthur Award». Ecology. 73 (6): 1943–1967. doi:10.2307/1941447. JSTOR 1941447.
  174. ^ a b Holling, C. S. (1973). «Resilience and stability of ecological systems» (PDF). Annual Review of Ecology and Systematics. 4 (1): 1–23. doi:10.1146/annurev.es.04.110173.000245. JSTOR 2096802. S2CID 53309505. Archived (PDF) from the original on 17 March 2020. Retrieved 10 August 2019.
  175. ^ a b Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. (2004). «Regime shifts, resilience, and biodiversity in ecosystem management» (PDF). Annual Review of Ecology and Systematics. 35: 557–581. CiteSeerX 10.1.1.489.8717. doi:10.1146/annurev.ecolsys.35.021103.105711. JSTOR 2096802. Archived from the original (PDF) on 18 October 2012.
  176. ^ Morgan Ernest, S. K.; Enquist, Brian J.; Brown, James H.; Charnov, Eric L.; Gillooly, James F.; Savage, Van M.; White, Ethan P.; Smith, Felisa A.; Hadly, Elizabeth A.; Haskell, John P.; Lyons, S. Kathleen; Maurer, Brian A.; Niklas, Karl J.; Tiffney, Bruce (2003). «Thermodynamic and metabolic effects on the scaling of production and population energy use» (PDF). Ecology Letters. 6 (11): 990–995. doi:10.1046/j.1461-0248.2003.00526.x. Archived from the original (PDF) on 8 June 2011. Retrieved 6 September 2009.
  177. ^ Allègre, Claude J.; Manhès, Gérard; Göpel, Christa (1995). «The age of the Earth». Geochimica et Cosmochimica Acta. 59 (8): 1455–1456. Bibcode:1995GeCoA..59.1445A. doi:10.1016/0016-7037(95)00054-4.
  178. ^ Wills, C.; Bada, J. (2001). The Spark of Life: Darwin and the Primeval Soup. Cambridge, MA: Perseus Publishing. ISBN 978-0-7382-0493-2.
  179. ^ a b Goldblatt, Colin; Lenton, Timothy M.; Watson, Andrew J. (2006). «Bistability of atmospheric oxygen and the Great Oxidation» (PDF). Nature. 443 (7112): 683–686. Bibcode:2006Natur.443..683G. doi:10.1038/nature05169. PMID 17036001. S2CID 4425486. Archived from the original (PDF) on 20 August 2011.
  180. ^ Catling, D. C.; Claire, M. W. (2005). «How Earth’s atmosphere evolved to an oxic state: A status report» (PDF). Earth and Planetary Science Letters. 237 (1–2): 1–20. Bibcode:2005E&PSL.237….1C. doi:10.1016/j.epsl.2005.06.013. Archived from the original (PDF) on 10 October 2008. Retrieved 6 September 2009.
  181. ^ a b c d Cronk, J. K.; Fennessy, M. S. (2001). Wetland Plants: Biology and Ecology. Washington, D.C.: Lewis Publishers. ISBN 1-56670-372-7. Archived from the original on 18 March 2015. Retrieved 27 June 2015.
  182. ^ Evans, D. H.; Piermarini, P. M.; Potts, W. T. W. (1999). «Ionic transport in the fish gill epithelium» (PDF). Journal of Experimental Zoology. 283 (7): 641–652. doi:10.1002/(SICI)1097-010X(19990601)283:7<641::AID-JEZ3>3.0.CO;2-W. Archived from the original (PDF) on 26 June 2010. Retrieved 9 December 2009.
  183. ^ Swenson, N. G.; Enquist, B. J. (2008). «The relationship between stem and branch wood specific gravity and the ability of each measure to predict leaf area». American Journal of Botany. 95 (4): 516–519. doi:10.3732/ajb.95.4.516. PMID 21632377. S2CID 429191.
  184. ^ Gartner, Gabriel E.A.; Hicks, James W.; Manzani, Paulo R.; et al. (2010). «Phylogeny, ecology, and heart position in snakes» (PDF). Physiological and Biochemical Zoology. 83 (1): 43–54. doi:10.1086/648509. hdl:11449/21150. PMID 19968564. S2CID 16332609. Archived from the original (PDF) on 16 July 2011.
  185. ^ Neri Salvadori, Pasquale Commendatore, Massimo Tamberi (14 May 2014). Geography, structural Change and Economic Development: Theory and Empirics. Edward Elgar Publishing.{{cite book}}: CS1 maint: uses authors parameter (link)
  186. ^ Jacobsen, D. (2008). «Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates». Oecologia. 154 (4): 795–807. Bibcode:2008Oecol.154..795J. doi:10.1007/s00442-007-0877-x. PMID 17960424. S2CID 484645.
  187. ^ Wheeler, T. D.; Stroock, A. D. (2008). «The transpiration of water at negative pressures in a synthetic tree». Nature. 455 (7210): 208–212. Bibcode:2008Natur.455..208W. doi:10.1038/nature07226. PMID 18784721. S2CID 4404849.
  188. ^ Pockman, W. T.; Sperry, J. S.; O’Leary, J. W. (1995). «Sustained and significant negative water pressure in xylem». Nature. 378 (6558): 715–716. Bibcode:1995Natur.378..715P. doi:10.1038/378715a0. S2CID 31357329.
  189. ^ Zimmermann, U.; Schneider, H.; Wegner, L. H.; Wagner, M.; Szimtenings, A.; Haase, F.; Bentrup, F. W. (2002). «What are the driving forces for water lifting in the xylem conduit?». Physiologia Plantarum. 114 (3): 327–335. doi:10.1034/j.1399-3054.2002.1140301.x. PMID 12060254.
  190. ^ Kastak, D.; Schusterman, R. J. (1998). «Low-frequency amphibious hearing in pinnipeds: Methods, measurements, noise, and ecology». Journal of the Acoustical Society of America. 103 (4): 2216–2228. Bibcode:1998ASAJ..103.2216K. doi:10.1121/1.421367. PMID 9566340. S2CID 19008897.
  191. ^ Nishiguchi, Y.; Ito, I.; Okada, M. (2010). «Structure and function of lactate dehydrogenase from hagfish». Marine Drugs. 8 (3): 594–607. doi:10.3390/md8030594. PMC 2857353. PMID 20411117.
  192. ^ Friedman, J.; Harder, L. D. (2004). «Inflorescence architecture and wind pollination in six grass species» (PDF). Functional Ecology. 18 (6): 851–860. doi:10.1111/j.0269-8463.2004.00921.x. S2CID 20160390. Archived from the original (PDF) on 6 July 2011.
  193. ^ Harder, L. D.; Johnson, S. D. (2009). «Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation». New Phytologist. 183 (3): 530–545. doi:10.1111/j.1469-8137.2009.02914.x. PMID 19552694.
  194. ^ Shimeta, J.; Jumars, P. A.; Lessard, E. J. (1995). «Influences of turbulence on suspension feeding by planktonic protozoa; experiments in laminar shear fields». Limnology and Oceanography. 40 (5): 845–859. Bibcode:1995LimOc..40..845S. doi:10.4319/lo.1995.40.5.0845.
  195. ^ Etemad-Shahidi, A.; Imberger, J. (2001). «Anatomy of turbulence in thermally stratified lakes». Limnology and Oceanography. 46 (5): 1158–1170. Bibcode:2001LimOc..46.1158E. doi:10.4319/lo.2001.46.5.1158.
  196. ^ Wolf, B. O.; Walsberg, G. E. (2006). «Thermal effects of radiation and wind on a small bird and implications for microsite selection». Ecology. 77 (7): 2228–2236. doi:10.2307/2265716. JSTOR 2265716.
  197. ^ Daubenmire, R. (1975). «Floristic plant geography of eastern Washington and northern Idaho». Journal of Biogeography. 2 (1): 1–18. doi:10.2307/3038197. JSTOR 3038197.
  198. ^ Steele, C. A.; Carstens, B. C.; Storfer, A.; Sullivan, J. (2005). «Testing hypotheses of speciation timing in Dicamptodon copei and Dicamptodon aterrimus (Caudata: Dicamptodontidae)» (PDF). Molecular Phylogenetics and Evolution. 36 (1): 90–100. doi:10.1016/j.ympev.2004.12.001. PMID 15904859. Archived from the original (PDF) on 14 August 2010.
  199. ^ Lenton, T. M.; Watson, A. (2000). «Redfield revisited. 2. What regulates the oxygen content of the atmosphere». Global Biogeochemical Cycles. 14 (1): 249–268. Bibcode:2000GBioC..14..249L. doi:10.1029/1999GB900076.
  200. ^ Lobert, J. M.; Warnatz, J. (1993). «Emissions from the combustion process in vegetation» (PDF). In Crutzen, P. J.; Goldammer, J. G. (eds.). Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires. Wiley. ISBN 978-0-471-93604-6. Archived from the original (PDF) on 6 January 2009. Retrieved 11 December 2009.
  201. ^ Garren, K. H. (1943). «Effects of fire on vegetation of the southeastern United States». Botanical Review. 9 (9): 617–654. doi:10.1007/BF02872506. S2CID 31619796.
  202. ^ Cooper, C. F. (1960). «Changes in vegetation, structure, and growth of southwestern pine forests since white settlement». Ecological Monographs. 30 (2): 130–164. doi:10.2307/1948549. JSTOR 1948549.
  203. ^ Cooper, C. F. (1961). «The ecology of fire». Scientific American. 204 (4): 150–160. Bibcode:1961SciAm.204d.150C. doi:10.1038/scientificamerican0461-150.
  204. ^ van Wagtendonk, Jan W. (2007). «History and evolution of wildland fire use». Fire Ecology. 3 (2): 3–17. doi:10.4996/fireecology.0302003. S2CID 85841606.
  205. ^ Boerner, R. E. J. (1982). «Fire and nutrient cycling in temperate ecosystems». BioScience. 32 (3): 187–192. doi:10.2307/1308941. JSTOR 1308941.
  206. ^ Goubitz, S.; Werger, M. J. A.; Ne’eman, G. (2009). «Germination response to fire-related factors of seeds from non-serotinous and serotinous cones». Plant Ecology. 169 (2): 195–204. doi:10.1023/A:1026036332277. S2CID 32500454.
  207. ^ Ne’eman, G.; Goubitz, S.; Nathan, R. (2004). «Reproductive traits of Pinus halepensis in the light of fire: a critical review». Plant Ecology. 171 (1/2): 69–79. doi:10.1023/B:VEGE.0000029380.04821.99. S2CID 24962708.
  208. ^ Flematti, Gavin R.; Ghisalberti, Emilio L.; Dixon, Kingsley W.; Trengove, R. D. (2004). «A compound from smoke that promotes seed germination». Science. 305 (5686): 977. doi:10.1126/science.1099944. PMID 15247439. S2CID 42979006.
  209. ^
  210. ^ a b Wilkinson, M. T.; Richards, P. J.; Humphreys, G. S. (2009). «Breaking ground: Pedological, geological, and ecological implications of soil bioturbation» (PDF). Earth-Science Reviews. 97 (1–4): 257–272. Bibcode:2009ESRv…97..257W. doi:10.1016/j.earscirev.2009.09.005. Archived from the original on 13 April 2020. Retrieved 3 August 2012.
  211. ^ Phillips, J. D. (2009). «Soils as extended composite phenotypes». Geoderma. 149 (1–2): 143–151. Bibcode:2009Geode.149..143P. doi:10.1016/j.geoderma.2008.11.028.
  212. ^ Reinhardt, L.; Jerolmack, D.; Cardinale, B. J.; Vanacker, V.; Wright, J. (2010). «Dynamic interactions of life and its landscape: Feedbacks at the interface of geomorphology and ecology» (PDF). Earth Surface Processes and Landforms. 35 (1): 78–101. Bibcode:2010ESPL…35…78R. doi:10.1002/esp.1912. S2CID 14924423. Archived from the original (PDF) on 17 March 2015. Retrieved 2 January 2015.
  213. ^ Davic, R. D.; Welsh, H. H. (2004). «On the ecological role of salamanders» (PDF). Annual Review of Ecology and Systematics. 35: 405–434. doi:10.1146/annurev.ecolsys.35.112202.130116. Archived (PDF) from the original on 24 August 2009.
  214. ^ Hasiotis, S. T. (2003). «Complex ichnofossils of solitary and social soil organisms: Understanding their evolution and roles in terrestrial paleoecosystems». Palaeogeography, Palaeoclimatology, Palaeoecology. 192 (2): 259–320. Bibcode:2003PPP…192..259H. doi:10.1016/S0031-0182(02)00689-2.
  215. ^ Falkowski, P. G.; Fenchel, T.; Delong, E. F. (2008). «The microbial engines that drive Earth’s biogeochemical cycles» (PDF). Science. 320 (5879): 1034–1039. Bibcode:2008Sci…320.1034F. doi:10.1126/science.1153213. PMID 18497287. S2CID 2844984. Archived from the original (PDF) on 13 April 2020. Retrieved 24 October 2017.
  216. ^ Grace, J. (2004). «Understanding and managing the global carbon cycle». Journal of Ecology. 92 (2): 189–202. doi:10.1111/j.0022-0477.2004.00874.x.
  217. ^ Pearson, P. N.; Palmer, M. R. (2000). «Atmospheric carbon dioxide concentrations over the past 60 million years» (PDF). Nature. 406 (6797): 695–699. Bibcode:2000Natur.406..695P. doi:10.1038/35021000. PMID 10963587. S2CID 205008176. Archived from the original (PDF) on 21 August 2011.
  218. ^ Pagani, M.; Zachos, J. C.; Freeman, K. H.; Tipple, B.; Bohaty, S. (2005). «Marked decline in atmospheric carbon dioxide concentrations during the Paleogene». Science. 309 (5734): 600–603. Bibcode:2005Sci…309..600P. doi:10.1126/science.1110063. PMID 15961630. S2CID 20277445.
  219. ^ Zhuan, Q.; Melillo, J. M.; McGuire, A. D.; Kicklighter, D. W.; Prinn, R. G.; Steudler, P. A.; Felzer, B. S.; Hu, S. (2007). «Net emission of CH4 and CO2 in Alaska: Implications for the region’s greenhouse gas budget» (PDF). Ecological Applications. 17 (1): 203–212. doi:10.1890/1051-0761(2007)017[0203:NEOCAC]2.0.CO;2. hdl:1912/4714. ISSN 1051-0761. PMID 17479846. Archived from the original (PDF) on 30 June 2007.
  220. ^ Cox, Peter M.; Betts, Richard A.; Jones, Chris D.; Spall, Steven A.; Totterdell, Ian J. (2000). «Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model» (PDF). Nature. 408 (6809): 184–187. Bibcode:2000Natur.408..184C. doi:10.1038/35041539. PMID 11089968. S2CID 2689847. Archived from the original (PDF) on 17 September 2012.
  221. ^ Erwin, D. H. (2009). «Climate as a driver of evolutionary change». Current Biology. 19 (14): R575–R583. doi:10.1016/j.cub.2009.05.047. PMID 19640496. S2CID 6913670.
  222. ^ Bamber, J. (2012). «Shrinking glaciers under scrutiny» (PDF). Nature. 482 (7386): 482–483. Bibcode:2012Natur.482..482B. doi:10.1038/nature10948. PMID 22318516. S2CID 7311971. Retrieved 12 June 2017.
  223. ^ Heimann, Martin; Reichstein, Markus (2008). «Terrestrial ecosystem carbon dynamics and climate feedbacks» (PDF). Nature. 451 (7176): 289–292. Bibcode:2008Natur.451..289H. doi:10.1038/nature06591. PMID 18202646. S2CID 243073. Archived (PDF) from the original on 8 June 2011.
  224. ^ Davidson, Eric A.; Janssens, Ivan A. (2006). «Temperature sensitivity of soil carbon decomposition and feedbacks to climate change». Nature. 440 (7081): 165–173. Bibcode:2006Natur.440..165D. doi:10.1038/nature04514. PMID 16525463.
  225. ^ a b c Stauffer, R. C. (1957). «Haeckel, Darwin and ecology». The Quarterly Review of Biology. 32 (2): 138–144. doi:10.1086/401754. S2CID 84079279.
  226. ^ a b Egerton, F. N. (2001). «A history of the ecological sciences: early Greek origins» (PDF). Bulletin of the Ecological Society of America. 82 (1): 93–97. Archived from the original (PDF) on 17 August 2012. Retrieved 29 September 2010.
  227. ^ a b Benson, Keith R. (2000). «The emergence of ecology from natural history». Endeavour. 24 (2): 59–62. doi:10.1016/S0160-9327(99)01260-0. PMID 10969480.
  228. ^ Sober, E. (1980). «Evolution, population thinking, and essentialism». Philosophy of Science. 47 (3): 350–383. doi:10.1086/288942. JSTOR 186950. S2CID 170129617.
  229. ^ Hughes, J. D. (1985). «Theophrastus as ecologist». Environmental Review. 9 (4): 296–306. doi:10.2307/3984460. JSTOR 3984460. S2CID 155638387.
  230. ^ Hughes, J. D. (1975). «Ecology in ancient Greece». Inquiry. 18 (2): 115–125. doi:10.1080/00201747508601756.
  231. ^ Forbes, S. (1887). «The lake as a microcosm» (PDF). Bulletin of the Scientific Association. Peoria, IL: 77–87. Archived from the original (PDF) on 27 September 2011. Retrieved 22 December 2009.
  232. ^ a b Kingsland, S. (2004). «Conveying the intellectual challenge of ecology: An historical perspective» (PDF). Frontiers in Ecology and the Environment. 2 (7): 367–374. doi:10.1890/1540-9295(2004)002[0367:CTICOE]2.0.CO;2. ISSN 1540-9295. Archived from the original (PDF) on 10 August 2011.
  233. ^ Rosenzweig, M. L. (2003). «Reconciliation ecology and the future of species diversity». Oryx. 37 (2): 194–205. doi:10.1017/s0030605303000371. S2CID 37891678.
  234. ^ Hawkins, B. A. (2001). «Ecology’s oldest pattern». Endeavor. 25 (3): 133–4. doi:10.1016/S0160-9327(00)01369-7. PMID 11725309.
  235. ^ a b c d e f McIntosh, R. P. (1985). The Background of Ecology: Concept and Theory. Cambridge University Press. p. 400. ISBN 0-521-27087-1.
  236. ^ Haeckel, Ernst (1866). Generelle Morphologie der Organismen [The General Morphology of Organisms] (in German). Vol. 2. Berlin, (Germany): Georg Reimer. p. 286. Archived from the original on 18 June 2019. Retrieved 27 February 2019. From p. 286: «Unter Oecologie verstehen wir die gesammte Wissenschaft von den Beziehungen des Organismus zur umgebenden Aussenwelt, wohin wir im weiteren Sinne alle «Existenz-Bedingungen» rechnen können.» (By «ecology» we understand the comprehensive science of the relationships of the organism to its surrounding environment, where we can include, in the broader sense, all «conditions of existence».)
  237. ^ Friederichs, K. (1958). «A definition of ecology and some thoughts about basic concepts». Ecology. 39 (1): 154–159. doi:10.2307/1929981. JSTOR 1929981.
  238. ^ Hinchman, L. P.; Hinchman, S. K. (2007). «What we owe the Romantics». Environmental Values. 16 (3): 333–354. doi:10.3197/096327107X228382.
  239. ^ Goodland, R. J. (1975). «The tropical origin of ecology: Eugen Warming’s jubilee». Oikos. 26 (2): 240–245. doi:10.2307/3543715. JSTOR 3543715.
  240. ^ a b Egerton, F. N. (2007). «A history of the ecological sciences, part 23: Linnaeus and the economy of nature». Bulletin of the Ecological Society of America. 88 (1): 72–88. doi:10.1890/0012-9623(2007)88[72:AHOTES]2.0.CO;2. ISSN 0012-9623.
  241. ^ a b Kormandy, E. J.; Wooster, Donald (1978). «Review: Ecology/economy of nature – synonyms?». Ecology. 59 (6): 1292–1294. doi:10.2307/1938247. JSTOR 1938247.
  242. ^ a b Hector, A.; Hooper, R. (2002). «Darwin and the first ecological experiment». Science. 295 (5555): 639–640. doi:10.1126/science.1064815. PMID 11809960. S2CID 82975886.
  243. ^ Sinclair, G. (1826). «On cultivating a collection of grasses in pleasure-grounds or flower-gardens, and on the utility of studying the Gramineae». London Gardener’s Magazine. Vol. 1. New-Street-Square: A. & R. Spottiswoode. p. 115. Archived from the original on 7 April 2022. Retrieved 19 November 2020.
  244. ^ May, R. (1999). «Unanswered questions in ecology». Philosophical Transactions of the Royal Society B. 354 (1392): 1951–1959. doi:10.1098/rstb.1999.0534. PMC 1692702. PMID 10670015.
  245. ^ Darwin, Charles (1859). On the Origin of Species (1st ed.). London, UK: John Murray. p. 1. ISBN 0-8014-1319-2. Archived from the original on 13 July 2007.
  246. ^ Meysman, F. J. R.; Middelburg, Jack J.; Heip, C. H. R. (2006). «Bioturbation: A fresh look at Darwin’s last idea». Trends in Ecology and Evolution. 21 (22): 688–695. doi:10.1016/j.tree.2006.08.002. PMID 16901581.
  247. ^ Acot, P. (1997). «The Lamarckian cradle of scientific ecology». Acta Biotheoretica. 45 (3–4): 185–193. doi:10.1023/A:1000631103244. S2CID 83288244.
  248. ^ a b Hunt, Caroline Louisa (1912). The life of Ellen H. Richards (1st ed.). Boston: Whitcomb & Barrows.
  249. ^ Clements, F. E. (1905). Research methods in ecology. Lincoln, Neb.: University Pub. Comp. ISBN 0-405-10381-6. Archived from the original on 1 August 2020. Retrieved 6 January 2020.
  250. ^ Simberloff, D. (1980). «A succession of paradigms in ecology: Essentialism to materialism and probalism». Synthese. 43: 3–39. doi:10.1007/BF00413854. S2CID 46962930.
  251. ^ Gleason, H. A. (1926). «The individualistic concept of the plant association» (PDF). Bulletin of the Torrey Botanical Club. 53 (1): 7–26. doi:10.2307/2479933. JSTOR 2479933. Archived from the original (PDF) on 22 July 2011.
  252. ^ Foster, J. B.; Clark, B. (2008). «The sociology of ecology: ecological organicism versus ecosystem ecology in the social construction of ecological science, 1926–1935» (PDF). Organization & Environment. 21 (3): 311–352. doi:10.1177/1086026608321632. S2CID 145482219. Archived from the original (PDF) on 9 May 2013.
  253. ^ Allee, W. C. (1932). Animal Life and Social Growth. Baltimore: The Williams & Wilkins Company and Associates.
  254. ^ Cook, R. E. (1977). «Raymond Lindeman and the trophic-dynamic concept in ecology» (PDF). Science. 198 (4312): 22–26. Bibcode:1977Sci…198…22C. doi:10.1126/science.198.4312.22. PMID 17741875. S2CID 30340899. Archived (PDF) from the original on 5 October 2012.
  255. ^ Odum, E. P. (1968). «Energy flow in ecosystems: A historical review». American Zoologist. 8 (1): 11–18. doi:10.1093/icb/8.1.11. JSTOR 3881528.
  256. ^ a b Ghilarov, A. M. (1995). «Vernadsky’s biosphere concept: an historical perspective». The Quarterly Review of Biology. 70 (2): 193–203. doi:10.1086/418982. JSTOR 3036242. S2CID 85258634.
  257. ^ Itô, Y. (1991). «Development of ecology in Japan, with special reference to the role of Kinji Imanishi». Journal of Ecological Research. 6 (2): 139–155. doi:10.1007/BF02347158. S2CID 45293729.
  258. ^ Carson, R. (2002). Silent Spring. Houghton Mifflin Company. p. 348. ISBN 0-618-24906-0.
  259. ^ a b c Palamar, C. R. (2008). «The justice of ecological restoration: Environmental history, health, ecology, and justice in the United States» (PDF). Human Ecology Review. 15 (1): 82–94. Archived from the original (PDF) on 26 July 2011. Retrieved 8 August 2012.
  260. ^ Krebs, J. R.; Wilson, J. D.; Bradbury, R. B.; Siriwardena, G. M. (1999). «The second Silent Spring» (PDF). Nature. 400 (6745): 611–612. Bibcode:1999Natur.400..611K. doi:10.1038/23127. S2CID 9929695. Archived from the original (PDF) on 31 March 2013.

External links[edit]

  • Ecology (Stanford Encyclopedia of Philosophy)
  • The Nature Education Knowledge Project: Ecology

Ecology is a new science and considered as an important branch of biological science, having only become prominent during the second half of the 20th century.[1] Ecological thought is derivative of established currents in philosophy, particularly from ethics and politics.[2]

Its history stems all the way back to the 4th century. One of the first ecologists whose writings survive may have been Aristotle or perhaps his student, Theophrastus, both of whom had interest in many species of animals and plants. Theophrastus described interrelationships between animals and their environment as early as the 4th century BC.[3] Ecology developed substantially in the 18th and 19th century. It began with Carl Linnaeus and his work with the economy of nature.[4] Soon after came Alexander von Humboldt and his work with botanical geography.[5] Alexander von Humboldt and Karl Möbius then contributed with the notion of biocoenosis. Eugenius Warming’s work with ecological plant geography led to the founding of ecology as a discipline.[6] Charles Darwin’s work also contributed to the science of ecology, and Darwin is often attributed with progressing the discipline more than anyone else in its young history. Ecological thought expanded even more in the early 20th century.[7] Major contributions included: Eduard Suess’ and Vladimir Vernadsky’s work with the biosphere, Arthur Tansley’s ecosystem, Charles Elton’s Animal Ecology, and Henry Cowles ecological succession.[8]

Ecology influenced the social sciences and humanities. Human ecology began in the early 20th century and it recognized humans as an ecological factor. Later James Lovelock advanced views on earth as a macro-organism with the Gaia hypothesis.[9][10] Conservation stemmed from the science of ecology. Important figures and movements include Shelford and the ESA, National Environmental Policy act, George Perkins Marsh, Theodore Roosevelt, Stephen A. Forbes, and post-Dust Bowl conservation. Later in the 20th century world governments collaborated on man’s effects on the biosphere and Earth’s environment.

The history of ecology is intertwined with the history of conservation efforts, in particular the founding of the Nature Conservancy.[11]

18th and 19th century Ecological murmursEdit

Arcadian and Imperial EcologyEdit

In the early Eighteenth century, preceding Carl Linnaeus, two rival schools of thought dominated the growing scientific discipline of ecology. First, Gilbert White a “parson-naturalist” is attributed with developing and endorsing the view of Arcadian ecology. Arcadian ecology advocates for a “simple, humble life for man” and a harmonious relationship with humans and nature.[12] Opposing the Arcadian view is Francis Bacon’s ideology, “imperial ecology”. Imperialists work “to establish through the exercise of reason and by hard work, man’s dominance over nature”.[12] Imperial ecologists also believe that man should become a dominant figure over nature and all other organisms as “once enjoyed in the Garden of Eden”.[12] Both views continued their rivalry through the early eighteenth century until Carl Linnaeus’s support of imperialism; and in short time due to Linnaeus’s popularity, imperial ecology became the dominant view within the discipline.

Carl Linnaeus and Systema NaturaeEdit

Carl Linnaeus, a Swedish naturalist, is well known for his work with taxonomy but his ideas helped to lay the groundwork for modern ecology. He developed a two part naming system for classifying plants and animals. Binomial Nomenclature was used to classify, describe, and name different genera and species. The compiled editions of Systema Naturae developed and popularized the naming system for plants and animals in modern biology. Reid suggests «Linnaeus can fairly be regarded as the originator of systematic and ecological studies in biodiversity,» due to his naming and classifying of thousands of plant and animal species. Linnaeus also influenced the foundations of Darwinian evolution, he believed that there could be change in or between different species within fixed genera. Linnaeus was also one of the first naturalists to place men in the same category as primates.[4]

The botanical geography and Alexander von HumboldtEdit

Throughout the 18th and the beginning of the 19th century, the great maritime powers such as Britain, Spain, and Portugal launched many world exploratory expeditions to develop maritime commerce with other countries, and to discover new natural resources, as well as to catalog them. At the beginning of the 18th century, about twenty thousand plant species were known, versus forty thousand at the beginning of the 19th century, and about 300,000 today.

These expeditions were joined by many scientists, including botanists, such as the German explorer Alexander von Humboldt. Humboldt is often considered as father of ecology. He was the first to take on the study of the relationship between organisms and their environment. He exposed the existing relationships between observed plant species and climate, and described vegetation zones using latitude and altitude, a discipline now known as geobotany. Von Humboldt was accompanied on his expedition by the botanist Aimé Bonpland.

In 1856, the Park Grass Experiment was established at the Rothamsted Experimental Station to test the effect of fertilizers and manures on hay yields. This is the longest-running field experiment in the world.[5]

The notion of biocoenosis: Wallace and MöbiusEdit

Alfred Russel Wallace, contemporary and colleague of Darwin, was first to propose a «geography» of animal species. Several authors recognized at the time that species were not independent of each other, and grouped them into plant species, animal species, and later into communities of living beings or biocoenosis. The first use of this term is usually attributed to Karl Möbius in 1877, but already in 1825, the French naturalist Adolphe Dureau de la Malle used the term societé about an assemblage of plant individuals of different species.

Warming and the foundation of ecology as disciplineEdit

While Darwin recognized the role of competition as one among many selective forces, Eugen Warming devised a new discipline that took abiotic factors, that is drought, fire, salt, cold etc., as seriously as biotic factors in the assembly of biotic communities. Biogeography before Warming was largely of descriptive nature – faunistic or floristic. Warming’s aim was, through the study of organism (plant) morphology and anatomy, i.e. adaptation, to explain why a species occurred under a certain set of environmental conditions. Moreover, the goal of the new discipline was to explain why species occupying similar habitats, experiencing similar hazards, would solve problems in similar ways, despite often being of widely different phylogenetic descent. Based on his personal observations in Brazilian cerrado, in Denmark, Norwegian Finnmark and Greenland, Warming gave the first university course in ecological plant geography. Based on his lectures, he wrote the book ‘Plantesamfund’, which was immediate translated to German, Polish and Russian, later to English as ‘Oecology of Plants’. Through its German edition, the book had an immense effect on British and North American scientists like Arthur Tansley, Henry Chandler Cowles and Frederic Clements.[6]

Malthusian influenceEdit

Thomas Robert Malthus was an influential writer on the subject of population and population limits in the early 19th century. His works were very important in shaping the ways in which Darwin saw the world worked. Malthus wrote:

That the increase of population is necessarily limited by the means of subsistence,

That population does invariably increase when the means of subsistence increase, and,

That the superior power of population is repressed, and the actual population kept equal to the means of subsistence, by misery and vice.[13]

In An Essay on the Principle of Population Malthus argues for the reining in of rising population through 2 checks: Positive and Preventive checks. The first raising death rates, the later lowers birthing rates.[14] Malthus also brings forth the idea that the world population will move past the sustainable number of people.[15] This form of thought still continues to influences debates on birth and marriage rates to this theory brought forth by Malthus.[16] The essay had a major influence on Charles Darwin and helped him to theories his theory of Natural Selection.[17] This struggle proposed by Malthusian thought not only influenced the ecological work of Charles Darwin, but helped bring about an economic theory of world of ecology.[18]

Darwinism and the science of ecologyEdit

It is often held that the roots of scientific ecology may be traced back to Darwin.[19] This contention may look convincing at first glance inasmuch as On the Origin of Species is full of observations and proposed mechanisms that clearly fit within the boundaries of modern ecology (e.g. the cat-to-clover chain – an ecological cascade) and because the term ecology was coined in 1866 by a strong proponent of Darwinism, Ernst Haeckel. However, Darwin never used the word in his writings after this year, not even in his most «ecological» writings such as the foreword to the English edition of Hermann Müller’s The Fertilization of Flowers (1883) or in his own treatise of earthworms and mull formation in forest soils (The formation of vegetable mould through the action of worms, 1881). Moreover, the pioneers founding ecology as a scientific discipline, such as Eugen Warming, A. F. W. Schimper, Gaston Bonnier, F.A. Forel, S.A. Forbes and Karl Möbius, made almost no reference to Darwin’s ideas in their works.[7] This was clearly not out of ignorance or because the works of Darwin were not widespread. Some such as S.A.Forbes studying intricate food webs asked questions as yet unanswered about the instability of food chains that might persist if dominant competitors were not adapted to have self-constraint.[20] Others focused on the dominant themes at the beginning, concern with the relationship between organism morphology and physiology on one side and environment on the other, mainly abiotic environment, hence environmental selection. Darwin’s concept of natural selection on the other hand focused primarily on competition.[21] The mechanisms other than competition that he described, primarily the divergence of character which can reduce competition and his statement that «struggle» as he used it was metaphorical and thus included environmental selection, were given less emphasis in the Origin than competition.[12] Despite most portrayals of Darwin conveying him as a non-aggressive recluse who let others fight his battles, Darwin remained all his life a man nearly obsessed with the ideas of competition, struggle and conquest – with all forms of human contact as confrontation.[12][22]

Although there is nothing incorrect in the details presented in the paragraph above, the fact that Darwinism used a particularly ecological view of adaptation and Haeckel’s use and definitions of the term were steeped in Darwinism should not be ignored. According to ecologist and historian Robert P. McIntosh, «the relationship of ecology to Darwinian evolution is explicit in the title of the work in which ecology first appeared.»[23][24] A more elaborate definition by Haeckel in 1870 is translated on the frontispiece of the influential ecology text known as ‘Great Apes’ as «… ecology is the study of all those complex interrelations referred to by Darwin as the conditions of the struggle for existence.»[25][26] The issues brought up in the above paragraph are covered in more detail in the Early Beginnings section underneath that of History in the Wikipedia page on Ecology.

Early 20th century ~ Expansion of ecological thoughtEdit

The biosphere – Eduard Suess and Vladimir VernadskyEdit

By the 19th century, ecology blossomed due to new discoveries in chemistry by Lavoisier and de Saussure, notably the nitrogen cycle. After observing the fact that life developed only within strict limits of each compartment that makes up the atmosphere, hydrosphere, and lithosphere, the Austrian geologist Eduard Suess proposed the term biosphere in 1875. Suess proposed the name biosphere for the conditions promoting life, such as those found on Earth, which includes flora, fauna, minerals, matter cycles, et cetera.

In the 1920s Vladimir I. Vernadsky, a Russian geologist who had defected to France, detailed the idea of the biosphere in his work «The biosphere» (1926), and described the fundamental principles of the biogeochemical cycles. He thus redefined the biosphere as the sum of all ecosystems.

First ecological damages were reported in the 18th century, as the multiplication of colonies caused deforestation. Since the 19th century, with the industrial revolution, more and more pressing concerns have grown about the impact of human activity on the environment. The term ecologist has been in use since the end of the 19th century.

The ecosystem: Arthur TansleyEdit

Over the 19th century, botanical geography and zoogeography combined to form the basis of biogeography. This science, which deals with habitats of species, seeks to explain the reasons for the presence of certain species in a given location.

It was in 1935 that Arthur Tansley, the British ecologist, coined the term ecosystem, the interactive system established between the biocoenosis (the group of living creatures), and their biotope, the environment in which they live. Ecology thus became the science of ecosystems.

Tansley’s concept of the ecosystem was adopted by the energetic and influential biology educator Eugene Odum. Along with his brother, Howard T. Odum, Eugene P. Odum wrote a textbook which (starting in 1953) educated more than one generation of biologists and ecologists in North America.

Ecological succession – Henry Chandler CowlesEdit

The Indiana Dunes on Lake Michigan, which Cowles referred to in his development of his theories of ecological succession.

At the turn of the 20th century, Henry Chandler Cowles was one of the founders of the emerging study of «dynamic ecology», through his study of ecological succession at the Indiana Dunes, sand dunes at the southern end of Lake Michigan. Here Cowles found evidence of ecological succession in the vegetation and the soil with relation to age. Cowles was very much aware of the roots of the concept and of his (primordial) predecessors.[8] Thus, he attributes the first use of the word to the French naturalist Adolphe Dureau de la Malle, who had described the vegetation development after forest clear-felling, and the first comprehensive study of successional processes to the Finnish botanist Ragnar Hult (1881).

Animal Ecology — Charles EltonEdit

20th century English zoologist and ecologist, Charles Elton, is commonly credited as “the father of animal ecology”.[27] Elton influenced by Victor Shelford’s Animal Communities in Temperate America began his research on animal ecology as an assistant to his colleague, Julian Huxley, on an ecological survey of the fauna in Spitsbergen in 1921. Elton’s most famous studies were conducted during his time as a biological consultant to the Hudson Bay Company to help understand the fluctuations in the company’s fur harvests. Elton studied the population fluctuations and dynamics of snowshoe hare, Canadian lynx, and other mammals of the region. Elton is also considered the first to coin the terms, food chain and food cycle in his famous book Animal Ecology.[28] Elton is also attributed with contributing to disciplines of: invasion ecology, community ecology, and wildlife disease ecology.[29]

G. Evelyn Hutchinson — father of modern ecologyEdit

George “G” Evelyn Hutchinson was a 20th-century ecologist who is commonly recognized as the “Father of Modern Ecology”. Hutchinson is of English descent but spent most of professional career studying in New Haven, Connecticut at Yale University. Throughout his career, over six decades, Hutchinson contributed to the sciences of limnology, entomology, genetics, biogeochemistry, mathematical theory of population dynamics and many more.[30] Hutchinson is also attributed as being the first to infuse science with theory within the discipline of ecology.[31] Hutchinson was also one of the first credited with combining ecology with mathematics. Another major contribution of Hutchinson was his development of the current definition of an organism’s “niche” – as he recognized the role of an organism within its community. Finally, along with his great impact within the discipline of ecology throughout his professional years, Hutchinson also left a lasting impact in ecology through his many students he inspired. Foremost among them were Robert H. MacArthur, who received his PhD under Hutchinson, and Raymond L. Lindemann, who finished his PhD dissertation during a fellowship under him. MacArthur became the leader of theoretical ecology and, with E. O. Wilson, developed island biography theory. Raymond Lindemann was instrumental in the development of modern ecosystem science.[32]

20th century transition to modern ecologyEdit

“What is ecology?” was a question that was asked in almost every decade of the 20th century.[33] Unfortunately, the answer most often was that it was mainly a point of view to be used in other areas of biology and also “soft,” like sociology, for example, rather than “hard,” like physics. Although autecology (essentially physiological ecology) could progress through the typical scientific method of observation and hypothesis testing, synecology (the study of animal and plant communities) and genecology (evolutionary ecology), for which experimentation was as limited as it was for, say, geology, continued with much the same inductive gathering of data as did natural history studies.[34] Most often, patterns, present and historical, were used to develop theories having explanatory power, but which had little actual data in support. Darwin’s theory, as much as it is a foundation of modern biology, is a prime example.

G. E. Hutchinson, identified above as the “father of modern ecology,” through his influence raised the status of much of ecology to that of a rigorous science. By shepherding of Raymond Lindemann’s work on the trophic-dynamic concept of ecosystems through the publication process after Lindemann’s untimely death,[35] Hutchinson set the groundwork for what became modern ecosystem science. With his two famous papers in the late1950s, “Closing remarks,”[36] and “Homage to Santa Rosalia,”[37] as they are now known, Hutchinson launched the theoretical ecology which Robert MacArthur championed.

Ecosystem science became rapidly and sensibly associated with the “Big Science”—and obviously “hard” science—of atomic testing and nuclear energy. It was brought in by Stanley Auerbach, who established the Environmental Sciences Division at Oak Ridge National Laboratory,[38] to trace the routes of radionuclides through the environment, and by the Odum brothers, Howard and Eugene, much of whose early work was supported by the Atomic Energy Commission.[39] Eugene Odum’s textbook, Fundamentals of Ecology, has become something of a bible today. When, in the 1960s, the International Biological Program (IBP) took on an ecosystem character,[40] ecology, with its foundation in systems science, forever entered the realm of Big Science, with projects having large scopes and big budgets. Just two years after the publication of Silent Spring in 1962, ecosystem ecology was trumpeted as THE science of the environment in a series of articles in a special edition of BioScience.[41]

Theoretical ecology took a different path to established its legitimacy, especially at eastern universities and certain West Coast campuses.[42] It was the path of Robert MacArthur, who used simple mathematics in his “Three Influential Papers,[43][44][45] also published in the late 1950s, on population and community ecology. Although the simple equations of theoretical ecology at the time, were unsupported by data, they still were still deemed to be “heuristic.” They were resisted by a number of traditional ecologists, however, whose complaints of “intellectual censorship” of studies that did not fit into the hypothetico-deductive structure of the new ecology might be seen as evidence of the stature to which the Hutchinson-MacArthur approach had risen by the 1970s.[46]

MacArthur’s untimely death in 1972 was also about the time that postmodernism and the “Science Wars” came to ecology. The names of Kuhn, Wittgenstein, Popper, Lakatos, and Feyerbrend began to enter into arguments in the ecological literature. Darwin’s theory of adaptation through natural selection was accused of being tautological.[47] Questions were raised over whether ecosystems were cybernetic[48] and whether ecosystem theory was of any use in application to environmental management.[49] Most vituperative of all was the debate that arose over MacArthur-style ecology.

Matters came to a head after a symposium organized by acolytes of MacArthur in homage to him and a second symposium organized by what was disparagingly called the “Tallahassee Mafia” at Wakulla Springs in Florida.[50] The homage volume,[51] published in 1975, had an extensive chapter written by Jared Diamond, who at the time taught kidney physiology at the UCLA School of Medicine, that presented a series of “assembly rules” to explain the patterns of bird species found on island archipelagos,[52] such as Darwin’s famous finches on the Galapagos Islands. The Wakulla conference was organized by a group of dissenters led by Daniel Simberloff and Donald Strong, Jr., who were described by David Quammen in his book as arguing that those patterns “might be nothing more than the faces we see in the moon, in clouds, in Rorschach inkblots.”[53] Their point was that Diamond’s work (and that of others) did not fall within the criterion of falsifiability, laid down for science by the philosopher, Karl Popper. A reviewer of the exchanges between the two camps in an issue of Synthese found “images of hand-to-hand combat or a bar-room brawl” coming to mind.[54] The Florida State group suggested a method that they developed, that of “null” models,[55] to be used much in the way that all scientists use null hypotheses to verify that their results might not have been obtained merely by chance.[56] It was most sharply rebuked by Diamond and Michel Gilpin in the symposium volume[57] and Jonathan Roughgarden in the American Naturalist.[58]

There was a parallel controversy adding heat to above that became known in conservation circles as SLOSS (Single Large or Several Small reserves). Diamond had also proposed that, according to the theory of island geography developed by MacArthur and E. O. Wilson,[59] nature preserves should be designed to be as large as possible and maintained as a unified entity. Even cutting a road through a natural area, in Diamond’s interpretation of MacArthur and Wilson’s theory, would lead to the loss of species, due to the smaller areas of the remaining pieces.[60] Simberloff, meanwhile, who had defaunated mangrove islands off the Florida coast in his award-winning experimental study under E. O. Wilson and tested the fit of the species-area curve of island biogeography theory to the fauna that returned,[61] had gathered data that showed quite the opposite: that many smaller fragments together sometimes held more species that the original whole.[62] It led to considerable vituperation on the pages of Science.[33]

In the end, in a somewhat Kuhnian fashion, the arguments probably will finally be settled (or not) by the passing of the participants. However, ecology continues apace as a rigorous, even experimental science. Null models, admittedly difficult to perfect, are in use, and, although a leading conservation scientist recently lauded island biogeography theory as “one of the most elegant and important theories in contemporary ecology, towering above thousands of lesser ideas and concept,” he nevertheless finds that “the species-area curve is a blunt tool in many contexts” and “now seems simplistic to the point of being cartoonish.”[63]

Timeline of ecologistsEdit

A list of founders, innovators and their significant contributions to ecology, from Romanticism onward.

Notable figure Lifespan Major contribution & citation
Antonie van Leeuwenhoek 1632–1723 First to develop concept of food chains
Carl Linnaeus 1707–1778 Influential naturalist, inventor of science on the economy of nature[64][65]
Alexander Humboldt 1769–1859 First to describe ecological gradient of latitudinal biodiversity increase toward the tropics [66] in 1807
Charles Darwin 1809–1882 Founder of the hypothesis of evolution by means of natural selection, founder of ecological studies of soils[67]
Elizabeth Catherine Thomas Carne 1817-1873 Geologist, mineralogist and philosopher who observed rural vs urban living, spatially and culturally, finding in country living the best attack on suffocating class divides, healthier living, and best access to natural education.[68][69]
Herbert Spencer 1820–1903 Early founder of social ecology, coined the phrase ‘survival of the fittest’[64][70]
Karl Möbius 1825–1908 First to develop concept of ecological community, biocenosis, or living community[71][72][73]
Ernst Haeckel 1834–1919 Invented the term ecology, popularized research links between ecology and evolution
Victor Hensen 1835–1924 Invented term plankton, developed quantitative and statistical measures of productivity in the seas
Eugenius Warming 1841–1924 Early founder of Ecological Plant Geography[6]
Ellen Swallow Richards 1842–1911 Pioneer and educator who linked urban ecology to human health[74]
Stephen Forbes 1844–1930 Early founder of entomology and ecological concepts in 1887 [20][75]
Vito Volterra 1860–1940 Independently pioneered mathematical populations models around the same time as Alfred J. Lotka.[76][77]
Vladimir Vernadsky 1869–1939 Founded the biosphere concept
Henry C. Cowles 1869–1939 Pioneering studies and conceptual development in studies of ecological succession[78]
Jan Christiaan Smuts 1870–1950 Coined the term holism in a 1926 book Holism and Evolution.[79]
Arthur G. Tansley 1871–1955 First to coin the term ecosystem in 1936 and notable researcher[72][80][81]
Charles Christopher Adams 1873–1955 Animal ecologist, biogeographer, author of first American book on animal ecology in 1913, founded ecological energetics[82][83]
Friedrich Ratzel 1844–1904 German geographer who first coined the term biogeography in 1891.
Frederic Clements 1874–1945 Authored the first influential American ecology book in 1905[84]
Victor Ernest Shelford 1877–1968 Founded physiological ecology, pioneered food-web and biome concepts, founded The Nature Conservancy[85][86]
Alfred J. Lotka 1880–1949 First to pioneer mathematical populations models explaining trophic (predator-prey) interactions using logistic equation[87]
Henry Gleason 1882–1975 Early ecology pioneer, quantitative theorist, author, and founder of the individualistic concept of ecology[84][88]
Charles S. Elton 1900–1991 ‘Father’ of animal ecology, pioneered food-web & niche concepts and authored influential Animal Ecology text[85][89]
G. Evelyn Hutchinson 1903–1991 Limnologist and conceptually advanced the niche concept[90][91][92]
Eugene P. Odum 1913–2002 Co-founder of ecosystem ecology and ecological thermodynamic concepts[81][85][93][94]
Howard T. Odum 1924–2002 Co-founder of ecosystem ecology and ecological thermodynamic concepts[81][85][93][94][95][96]
Robert MacArthur 1930–1972 Co-founder on Theory of Island Biogeography and innovator of ecological statistical methods[97]

Ecological Influence on the Social Sciences and HumanitiesEdit

Human ecologyEdit

Human ecology began in the 1920s, through the study of changes in vegetation succession in the city of Chicago. It became a distinct field of study in the 1970s. This marked the first recognition that humans, who had colonized all of the Earth’s continents, were a major ecological factor. Humans greatly modify the environment through the development of the habitat (in particular urban planning), by intensive exploitation activities such as logging and fishing, and as side effects of agriculture, mining, and industry. Besides ecology and biology, this discipline involved many other natural and social sciences, such as anthropology and ethnology, economics, demography, architecture and urban planning, medicine and psychology, and many more. The development of human ecology led to the increasing role of ecological science in the design and management of cities.

In recent years human ecology has been a topic that has interested organizational researchers. Hannan and Freeman (Population Ecology of Organizations (1977), American Journal of Sociology) argue that organizations do not only adapt to an environment. Instead it is also the environment that selects or rejects populations of organizations. In any given environment (in equilibrium) there will only be one form of organization (isomorphism). Organizational ecology has been a prominent theory in accounting for diversities of organizations and their changing composition over time.

James Lovelock and the Gaia hypothesisEdit

The Gaia theory, proposed by James Lovelock, in his work Gaia: A New Look at Life on Earth, advanced the view that the Earth should be regarded as a single living macro-organism. In particular, it argued that the ensemble of living organisms has jointly evolved an ability to control the global environment — by influencing major physical parameters as the composition of the atmosphere, the evaporation rate, the chemistry of soils and oceans — so as to maintain conditions favorable to life. The idea has been supported by Lynn Margulis who extended her endosymbiotic theory which suggests that cell organelles originated from free living organisms to the idea that individual organisms of many species could be considered as symbionts within a larger metaphorical «super-organism».[98]

This vision was largely a sign of the times, in particular the growing perception after the Second World War that human activities such as nuclear energy, industrialization, pollution, and overexploitation of natural resources, fueled by exponential population growth, were threatening to create catastrophes on a planetary scale, and has influenced many in the environmental movement since then.

History and relationship between ecology and conservation and environmental movementsEdit

Environmentalists and other conservationists have used ecology and other sciences (e.g., climatology) to support their advocacy positions. Environmentalist views are often controversial for political or economic reasons. As a result, some scientific work in ecology directly influences policy and political debate; these in turn often direct ecological research.

The history of ecology, however, should not be conflated with that of environmental thought. Ecology as a modern science traces only from Darwin’s publication of Origin of Species and Haeckel’s subsequent naming of the science needed to study Darwin’s theory. Awareness of humankind’s effect on its environment has been traced to Gilbert White in 18th-century Selborne, England.[12] Awareness of nature and its interactions can be traced back even farther in time.[9][10] Ecology before Darwin, however, is analogous to medicine prior to Pasteur’s discovery of the infectious nature of disease. The history is there, but it is only partly relevant.

Neither Darwin nor Haeckel, it is true, did self-avowed ecological studies. The same can be said for researchers in a number of fields who contributed to ecological thought well into the 1940s without avowedly being ecologists.[1][99] Raymond Pearl’s population studies are a case in point.[100] Ecology in subject matter and techniques grew out of studies by botanists and plant geographers in the late 19th and early 20th centuries that paradoxically lacked Darwinian evolutionary perspectives. Until Mendel’s studies with peas were rediscovered and melded into the Modern Synthesis,[101] Darwinism suffered in credibility. Many early plant ecologists had a Lamarckian view of inheritance, as did Darwin, at times. Ecological studies of animals and plants, preferably live and in the field, continued apace however.[102]

Conservation and environmental movements — 20th CenturyEdit

When the Ecological Society of America (ESA) was chartered in 1915, it already had a conservation perspective.[103] Victor E. Shelford, a leader in the society’s formation, had as one of its goals the preservation of the natural areas that were then the objects of study by ecologists, but were in danger of being degraded by human incursion.[104] Human ecology had also been a visible part of the ESA at its inception, as evident by publications such as: «The Control of Pneumonia and Influenza by the Weather,» «An Overlook of the Relations of Dust to Humanity,» «The Ecological Relations of the Polar Eskimo,» and «City Street Dust and Infectious Diseases,» in early pages of Ecology and Ecological Monographs. The ESA’s second president, Ellsworth Huntington, was a human ecologist. Stephen Forbes, another early president, called for «humanizing» ecology in 1921, since man was clearly the dominant species on the Earth.[105]

This auspicious start actually was the first of a series of fitful progressions and reversions by the new science with regard to conservation. Human ecology necessarily focused on man-influenced environments and their practical problems. Ecologists in general, however, were trying to establish ecology as a basic science, one with enough prestige to make inroads into Ivy League faculties. Disturbed environments, it was thought, would not reveal nature’s secrets.

Interest in the environment created by the American Dust Bowl produced a flurry of calls in 1935 for ecology to take a look at practical issues. Pioneering ecologist C. C. Adams wanted to return human ecology to the science.[106] Frederic E. Clements, the dominant plant ecologist of the day, reviewed land use issues leading to the Dust Bowl in terms of his ideas on plant succession and climax.[107] Paul Sears reached a wide audience with his book, Deserts on the March.[108] World War II, perhaps, caused the issue to be put aside.

The tension between pure ecology, seeking to understand and explain, and applied ecology, seeking to describe and repair, came to a head after World War II. Adams again tried to push the ESA into applied areas by having it raise an endowment to promote ecology. He predicted that «a great expansion of ecology» was imminent «because of its integrating tendency.»[109] Ecologists, however, were sensitive to the perception that ecology was still not considered a rigorous, quantitative science. Those who pushed for applied studies and active involvement in conservation were once more discreetly rebuffed. Human ecology became subsumed by sociology. It was sociologist Lewis Mumford who brought the ideas of George Perkins Marsh to modern attention in the 1955 conference, «Man’s Role in Changing the Face of the Earth.» That prestigious conclave was dominated by social scientists. At it, ecology was accused of «lacking experimental methods» and neglecting «man as an ecological agent.» One participant dismissed ecology as «archaic and sterile.»[110] Within the ESA, a frustrated Shelford started the Ecologists’ Union when his Committee on Preservation of Natural Conditions ceased to function due to the political infighting over the ESA stance on conservation.[103] In 1950, the fledgling organization was renamed and incorporated as the Nature Conservancy, a name borrowed from the British government agency for the same purpose.

Two events, however, brought ecology’s course back to applied problems. One was the Manhattan Project. It had become the Nuclear Energy Commission after the war. It is now the Department of Energy (DOE). Its ample budget included studies of the impacts of nuclear weapon use and production. That brought ecology to the issue, and it made a «Big Science» of it.[12][111] Ecosystem science, both basic and applied, began to compete with theoretical ecology (then called evolutionary ecology and also mathematical ecology). Eugene Odum, who published a very popular ecology textbook in 1953, became the champion of the ecosystem. In his publications, Odum called for ecology to have an ecosystem and applied focus.[112]

The second event was the publication of Silent Spring. Rachel Carson’s book brought ecology as a word and concept to the public. Her influence was instant. A study committee, prodded by the publication of the book, reported to the ESA that their science was not ready to take on the responsibility being given to it.[113]

Carson’s concept of ecology was very much that of Gene Odum.[114] As a result, ecosystem science dominated the International Biological Program of the 1960s and 1970s, bringing both money and prestige to ecology.[115][116] Silent Spring was also the impetus for the environmental protection programs that were started in the Kennedy and Johnson administrations and passed into law just before the first Earth Day. Ecologists’ input was welcomed. Former ESA President Stanley Cain, for example, was appointed an Assistant Secretary in the Department of the Interior.

The environmental assessment requirement of the 1969 National Environmental Policy Act (NEPA), «legitimized ecology,» in the words of one environmental lawyer.[117] An ESA President called it «an ecological ‘Magna Carta.’»[118] A prominent Canadian ecologist declared it a «boondoggle.»[119] NEPA and similar state statutes, if nothing else, provided much employment for ecologists. Therein was the issue. Neither ecology nor ecologists were ready for the task. Not enough ecologists were available to work on impact assessment, outside of the DOE laboratories, leading to the rise of «instant ecologists,»[120] having dubious credentials and capabilities. Calls began to arise for the professionalization of ecology. Maverick scientist Frank Egler, in particular, devoted his sharp prose to the task.[121] Again, a schism arose between basic and applied scientists in the ESA, this time exacerbated by the question of environmental advocacy. The controversy, whose history has yet to receive adequate treatment, lasted through the 1970s and 1980s, ending with a voluntary certification process by the ESA, along with lobbying arm in Washington.[122]

Post-Earth Day, besides questions of advocacy and professionalism, ecology also had to deal with questions having to do with its basic principles. Many of the theoretical principles and methods of both ecosystem science and evolutionary ecology began to show little value in environmental analysis and assessment.[123] Ecologist, in general, started to question the methods and logic of their science under the pressure of its new notoriety.[84][124][125] Meanwhile, personnel with government agencies and environmental advocacy groups were accused of religiously applying dubious principles in their conservation work.[126] Management of endangered Spotted Owl populations brought the controversy to a head.[127]

Conservation for ecologists created travails paralleling those nuclear power gave former Manhattan Project scientists. In each case, science had to be reconciled with individual politics, religious beliefs, and worldviews, a difficult process. Some ecologists managed to keep their science separate from their advocacy; others unrepentantly became avowed environmentalists.[128]

Roosevelt & American conservationEdit

Theodore Roosevelt was interested in nature from a young age. He carried his passion for nature into his political policies. Roosevelt felt it was necessary to preserve the resources of the nation and its environment. In 1902 he created the federal reclamation service, which reclaimed land for agriculture. He also created the Bureau of Forestry. This organization, headed by Gifford Pinchot, was formed to manage and maintain the nations timberlands.[129] Roosevelt signed the Act for the Preservation of American Antiquities in 1906. This act allowed for him to «declare by public proclamation historic landmarks, historic and prehistoric structures, and other objects of historic and scientific interest that are situated upon lands owned or controlled by the Government of the United States to be national monuments.» Under this act he created up to 18 national monuments. During his presidency, Roosevelt established 51 Federal Bird Reservations, 4 National Game Preserves, 150 National Forests, and 5 National Parks. Overall he protected over 200 million acres of land.[130]

Ecology and global policyEdit

Ecology became a central part of the World’s politics as early as 1971, UNESCO launched a research program called Man and Biosphere, with the objective of increasing knowledge about the mutual relationship between humans and nature. A few years later it defined the concept of Biosphere Reserve.

In 1972, the United Nations held the first international Conference on the Human Environment in Stockholm, prepared by Rene Dubos and other experts. This conference was the origin of the phrase «Think Globally, Act Locally». The next major events in ecology were the development of the concept of biosphere and the appearance of terms «biological diversity»—or now more commonly biodiversity—in the 1980s. These terms were developed during the Earth Summit in Rio de Janeiro in 1992, where the concept of the biosphere was recognized by the major international organizations, and risks associated with reductions in biodiversity were publicly acknowledged.

Then, in 1997, the dangers the biosphere was facing were recognized all over the world at the conference leading to the Kyoto Protocol. In particular, this conference highlighted the increasing dangers of the greenhouse effect – related to the increasing concentration of greenhouse gases in the atmosphere, leading to global changes in climate. In Kyoto, most of the world’s nations recognized the importance of looking at ecology from a global point of view, on a worldwide scale, and to take into account the impact of humans on the Earth’s environment.

See alsoEdit

  • Humboldtian science

ReferencesEdit

  1. ^ a b
    McIntosh, R. P. (1985). The Background of Ecology: Concept and Theory. New York: Cambridge University Press. ISBN 9780521270878.
  2. ^ Eric Laferrière; Peter J. Stoett (2 September 2003). International Relations Theory and Ecological Thought: Towards a Synthesis. Routledge. pp. 25–. ISBN 978-1-134-71068-3.
  3. ^ Ramalay, F. (1940). «The growth of a science». University of Colorado Studies. 26: 3–14.
  4. ^ a b Reid, Gordon Mcgregor (February 2009). «Carolus Linnaeus (1707-1778): His Life, Philosophy and Science and Its Relationship to Modern Biology and Medicine». Taxon. 58 (1): 18–31. doi:10.1002/tax.581005.
  5. ^ a b
    Silvertown, J.; Poulton, P.; Johnston, E.; Edwards, G.; Heard, M.; Biss, P. M. (2006). «The Park Grass Experiment 1856–2006: its contribution to ecology». Journal of Ecology. 94 (4): 801–814. doi:10.1111/j.1365-2745.2006.01145.x.
  6. ^ a b c
    Coleman, W. (1986). «Evolution into ecology? The strategy of Warming’s ecological plant geography». Journal of the History of Biology. 19 (2): 181–196. doi:10.1007/BF00138875. PMID 11611989. S2CID 36359864.
  7. ^ a b
    Acot, P. (1997). «The Lamarckian Cradle of Scientific Ecology». Acta Biotheoretica. 45 (3/4): 185–193. doi:10.1023/A:1000631103244. S2CID 83288244.
  8. ^ a b Cowles, H. C. (1911). «The causes of vegetational cycles». Annals of the Association of American Geographers. 1 (1): 3–20. doi:10.2307/2560843. JSTOR 2560843.
  9. ^ a b Egerton, F. N. (1973). «Changing Concepts of the Balance of Nature». Quarterly Review of Biology. 48 (2): 322–50. doi:10.1086/407594. S2CID 85279189.
  10. ^ a b Egerton, F. N. (2001). «A History of the Ecological Sciences, Part 1: Early Greek Origins» (PDF). Bulletin of the Ecological Society of America. 82: 93–97.
  11. ^
    Smith, S. HI; Mark, S. (2009). «The Historical Roots of the Nature Conservancy in the Northwest Indiana/Chicagoland Region: From Science to Preservation». The South Shore Journal. 3: 1–10. Archived from the original on 1 January 2016.
  12. ^ a b c d e f g
    Worster, D. (1994). Nature’s Economy: A History of Ecological Ideas. Cambridge University Press. ISBN 978-0-521-46834-3.
  13. ^ Malthus T.R. 1798. An Essay on the Principle of Population, in Oxford World’s Classics reprint. p 61, end of Chapter VII
  14. ^ Geoffrey Gilbert, introduction to Malthus T.R. 1798. An Essay on the Principle of Population. Oxford World’s Classics reprint. viii in Oxford World’s Classics reprint.
  15. ^ Malthus T.R. 1798. An Essay on the Principle of Population. Chapter 1, p 13 in Oxford World’s Classics reprint.
  16. ^ Geoffrey Gilbert, introduction to Malthus T.R. 1798. An Essay on the Principle of Population. Oxford World’s Classics reprint. xviii
  17. ^ van Wyhe, John (2008b). Darwin: The Story of the Man and His Theories of Evolution. London: Andre Deutsch Ltd (published 1 September 2008). ISBN 0-233-00251-0.
  18. ^ Darwin’s Malthusian Metaphor and Russian Evolutionary Thought, 1859-1917Author, Daniel P. Todes, p. 537-540
  19. ^
    Stauffer, R. C. (1957). «Haeckel, Darwin and Ecology». Quarterly Review of Biology. 32 (2): 138–144. doi:10.1086/401754. S2CID 84079279.
  20. ^ a b
    Forbes, S. A. (1887). «The Lake as Microcosm» (PDF). Bulletin of the Scientific Association: 77–87. Archived from the original (PDF) on 27 September 2011. Retrieved 19 January 2010.
  21. ^
    Paterson, H. (2005). «The Competitive Darwin». Paleobiology. 31 (2): 56–76. doi:10.1666/0094-8373(2005)031[0056:TCD]2.0.CO;2. S2CID 85997382.
  22. ^ Kormondy, E. J. (1978). «Ecology/economy of nature—synonyms?». Ecology. 59 (6): 1292–4. doi:10.2307/1938247. JSTOR 1938247.
  23. ^ McIntosh, Robert P. (1985). The Background of Ecology: Concept and Theory. Cambridge University Press.
  24. ^ Haeckel, E. (1866). Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. 2 vols. Reimer, Berlin.
  25. ^ Allee W. C., Emerson, A. E., Park, O., Park T., and Schmidt, K. P. (1949). Principles of Animal Ecology. Saunders, Philadelphia.
  26. ^ McIntosh, Robert P. (1985). The Background of Ecology: Concept and Theory. Cambridge University Press.
  27. ^ Southwood, R.; Clarke, J. R. (1999). «Charles Sutherland Elton. 29 March 1900 — 1 May: Elected F.R.S. 1953».
  28. ^ Elton, C.S. 1968 reprint. Animal ecology. Great Britain: William Clowes and Sons Ltd.
  29. ^ Wilson, Ken. 2011. Animal Ecology — Legacy of Charles S Elton.http://www.journalofanimalecology.org/view/0/virtualissuelegacyofcharlesselton.html ed.Journal of Animal Ecology.
  30. ^ Slobodkin, L.B. (1993). «An Appreciation: George Evelyn Hutchinson». Journal of Animal Ecology. 62 (2): 390–394. doi:10.2307/5370. JSTOR 5370.
  31. ^ Lovejoy, T. E. (2011). «George Evelyn Hutchinson. 13 January 1903 — 17 May 1991». Biographical Memoirs of Fellows of the Royal Society. 57: 167–177. doi:10.1098/rsbm.2010.0016. S2CID 70848446.
  32. ^ McIntosh, R. P. (1985). The Background of Ecology. Cambridge University Press.
  33. ^ a b Dritschilo, W. (2008). “Bringing statistical methods to community and evolutionary ecology.” In Harman, O.; Dietrich, M. R. (eds.) Rebels, Mavericks, and Heretics in Biology. New Haven, Yale University Press. pp. 356-371.
  34. ^ McIntosh, R. P. (1985). The Background of Ecology. Cambridge University Press.
  35. ^ Cook, R. E. (1977). «Raymond Lindeman and the Trophic-Dynamic Concept in Ecology». Science. 198 (4312): 22–26. Bibcode:1977Sci…198…22C. doi:10.1126/science.198.4312.22. PMID 17741875. S2CID 30340899.
  36. ^ Hutchinson, G. E. (1957). «Concluding Remarks». Cold Spring Harbor Symposia on Quantitative Biology. 22: 415–427. doi:10.1101/sqb.1957.022.01.039.
  37. ^ Hutchinson, G. E. (1959). «Homage to Santa Rosalia; or, why are there so many kinds of animals?». American Naturalist. 93 (870): 145–159. doi:10.1086/282070. S2CID 26401739.
  38. ^ Bocking, S. (1997). Ecologists and Environmental Politics: A History of Contemporary Ecology. New Haven, Yale University Press.
  39. ^ Craige, B. J. (2001). Eugene Odum: Ecosystem Ecologist and Environmentalist. Athens, Georgia, University of Georgia Press.
  40. ^ Golley, F. B. (1993). A History of the Ecosystem Concept in Ecology. New Haven,Yale University Press.
  41. ^ BioScience. (1964). 14(7).
  42. ^ Dritschilo, W, (2019). Earth Days Reprised. Page 161. Amazon.com.
  43. ^ MacArthur, R. H. (1955). «Fluctuations of Animal Populations, and a Measure of Stability». Ecology. 36: 533–536. doi:10.2307/1929601. JSTOR 1929601.
  44. ^ MacArthur, R. H. (1957). «On the Relative Abundance of Bird Species». Proceedings of the National Academy of Sciences, USA. 45 (3): 293–295. Bibcode:1957PNAS…43..293M. doi:10.1073/pnas.43.3.293. PMC 528435. PMID 16590018.
  45. ^ MacArthur, R. H. (1958). «Population Ecology of Some Warblers of Northeastern Coniferous Forests». Ecology. 39 (4): 599–619. doi:10.2307/1931600. JSTOR 1931600.
  46. ^ Van Valen, L.; Pitelka, F. (1974). «Commentary: Intellectual Censorship in Ecology». Ecology. 55: 925–926. doi:10.2307/1940345. JSTOR 1940345.
  47. ^ Peters, R. H. (1976). «Tautology in evolution and ecology». American Naturalist. 110 (971): 1–12. doi:10.1086/283045. S2CID 84636015.
  48. ^ Engleberg, J.; Boyarsky, L. L. (1979).»The Noncybernetic Nature of Ecosystems.» The American Naturalist 114: 317-324.
  49. ^ Suter, G. W. (1981). «Ecosystem Theory and NEPA Assessment». Bulletin of the Ecological Society of America. 62: 186–192.
  50. ^ Lewin, R (1983). «Santa Rosalia Was a Goat». Science. 221 (4611): 636–639. Bibcode:1983Sci…221..636L. doi:10.1126/science.221.4611.636. PMID 17787727.
  51. ^ Cody, M. L., and Diamond, J. M. (1975) Editors, Ecology and Evolution of Communities. Cambridge, Massachusetts, Harvard University Press.
  52. ^ Diamond, J. M. (1975). “Assembly of Species Communities,” Pages 342-444 in Cody, M. L.; and Diamond, J. M. Ecology and Evolution of Communities Cambridge, Massachusetts, Harvard University Press.
  53. ^ Quammen, D. (1996). The Song of the Dodo: Island Biogeography in an Age of Extinction. New York, Simon & Schuster.
  54. ^ Allen, T. F. H. (1981). «The Noble Art of Philosophical Ecology». Ecology. 62 (3): 870–871. doi:10.2307/1937754. JSTOR 1937754.
  55. ^ Gotelli, N. J.; Graves, G. R. (1996), Null Models in Ecology. Washington, D. C. Smithsonian Institution Press.
  56. ^ Strong, D. R., Jr.; Simberloff, D.; Abele, L. G.; Thistle, A. B. (1984). Editors, Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press.
  57. ^ Gilpin, M. E.; Diamond, J. M. (1984). “Are Species Co-occurrences on Islands Non-random?” Pages 297-315 in Strong, et al, Ecological Communities.
  58. ^ Roughgarden, J (1983). «Competition and Theory in Community Ecology». The American Naturalist. 122 (5): 583–601. doi:10.1086/284160. S2CID 85383433.
  59. ^ MacArthur, R. H.; Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton University Press.
  60. ^ Diamond, J. M. (1975). «The Island Dilemma: Lessons of Modern Biogeographic Studies for the Design of Nature Reserves». Biological Conservation. 7 (2): 129–146. doi:10.1016/0006-3207(75)90052-x.
  61. ^ Simberloff, D. S.; Wilson, E. O. (1969). «Experimental Zoogeography of Islands: The Colonization of Empty Islands». Ecology. 50 (2): 278–296. doi:10.2307/1934856. JSTOR 1934856.
  62. ^ Simberloff, D. S.; Abele, L. G. (1976). «Island Biogeography Theory and Conservation Practice». Science. 191 (4224): 285–286. Bibcode:1976Sci…191..285S. doi:10.1126/science.191.4224.285. PMID 17832147. S2CID 12912668.
  63. ^ Laurance, W. F. (2008). «Theory Meets reality: How Habitat Fragmentation Research has Transcended Island Biogeographic Theory». Biological Conservation. 141 (7): 1731–1744. doi:10.1016/j.biocon.2008.05.011.
  64. ^ a b
    Kormandy, E. J. (1978). «Ecology/Economy of Nature—Synonyms?». Ecology. 59 (6): 1292–1294. doi:10.2307/1938247. JSTOR 1938247.
  65. ^
    Egerton, F. N. (2007). «A History of the Ecological Sciences, Part 23: Linnaeus and the Economy of Nature». Bulletin of the Ecological Society of America. 88 (1): 72–88. doi:10.1890/0012-9623(2007)88[72:AHOTES]2.0.CO;2.
  66. ^ [1][dead link]
  67. ^
    Darwin, C. (1859). On the Origin of Species (1st ed.). London: John Murray. ISBN 978-0-8014-1319-3.
  68. ^
    Country Towns, and the Place They Fill in Modern Civilization. Covent Garden: Bell & Daldy. 1868.
  69. ^
    Hardie-Budden, M. (2014). «Elizabeth Catherine Thomas Carne: A 19th century Hypatia and her circle». Transactions of the Royal Geological Society of Cornwall. 23 (1): 16–39. ISSN 0372-1108.
  70. ^
    Futuyma, D. J. (2005). «The Nature of Natural Selection». In Cracraft, J.; Bybee, R. W. (eds.). Evolutionary Science and Society: Educating a New Generation. American Institute of Biological Sciences. pp. 93–98.
  71. ^
    Glaubrecht, M. (2008). «Homage to Karl August Möbius (1825–1908) and his contributions to biology: zoologist, ecologist, and director at the Museum für Naturkunde in Berlin». Zoosystematics and Evolution. 84 (1): 9–30. doi:10.1002/zoos.200700010.
  72. ^ a b
    Baker, H. G. (1966). «Reasoning about adaptations in ecosystems». BioScience. 16 (1): 35–37. doi:10.2307/1293551. JSTOR 1293551.
  73. ^
    Nyhart, L. K. (1998). «Civic and Economic Zoology in Nineteenth-Century Germany: The «Living Communities» of Karl Mobius». Isis. 89 (4): 605–630. doi:10.1086/384157. JSTOR 236735. S2CID 144650169.
  74. ^
    Palamar, C. R. (2008). «The Justice of Ecological Restoration: Environmental History, Health, Ecology, and Justice in the United States» (PDF). Human Ecology Review. 15 (1): 82–94.
  75. ^
    Forbes, S. A. (1915). «The ecological foundations of applied entomology» (PDF). Annals of the Entomological Society of America. 8 (1): 1–19. doi:10.1093/aesa/8.1.1. Archived from the original (PDF) on 27 September 2011. Retrieved 19 January 2010.
  76. ^
    Cohen, J. E. (1987). «Lotka, Alfred James (1880–1949)» (PDF). In Eatwell, J.; Newman, P. (eds.). The New Palgrave Dictionary of Economics. New York: Stockton Press. pp. 245–247. Archived from the original (PDF) on 26 June 2009.
  77. ^
    Volterra, V. (1926). «Fluctuations in the Abundance of a Species considered Mathematically». Nature. 118 (2972): 558–560. Bibcode:1926Natur.118..558V. doi:10.1038/118558a0. S2CID 4007591.
  78. ^
    Adams, C. C.; Fuller, G. D. (1940). «Henry Chandler Cowles, Physiographic Plant Ecologist». Annals of the Association of American Geographers. 31 (1): 39–43. doi:10.1080/00045604009357195. JSTOR 2561130.
  79. ^ Smuts, Jan Christiaan (1926). «Holism and Evolution». Nature. 119 (2991): 307–309. Bibcode:1927Natur.119..307K. doi:10.1038/119307a0. S2CID 33107208.
  80. ^
    Cooper, W. S. (1957). «Sir Arthur Tansley and the Science of Ecology». Ecology. 38 (4): 658–659. doi:10.2307/1943136. JSTOR 1943136.
  81. ^ a b c
    Kingsland, S. E. (1994). «Review: The History of Ecology». Journal of the History of Biology. 27 (2): 349–357. doi:10.1007/BF01062566. PMID 11639332. S2CID 6125993.
  82. ^
    Ilerbaig, J. (1999). «Allied Sciences and Fundamental Problems: C.C. Adams and the Search for Method in Early American Ecology». Journal of the History of Biology. 32 (3): 439–463. doi:10.1023/A:1004737021541. JSTOR 4331545. S2CID 82928157.
  83. ^
    Raup, H. M. (1959). «Charles C. Adams, 1873–1955». Annals of the Association of American Geographers. 49 (2): 164–167. doi:10.1111/j.1467-8306.1959.tb01607.x. JSTOR 2561526.
  84. ^ a b c
    Simberloff, D. (1980). «A succession of paradigms in ecology: Essentialism to materialism and probalism». Synthese. 43: 3–39. doi:10.1007/BF00413854. S2CID 46962930.
  85. ^ a b c d
    Ellison, A. M. (2006). «What Makes an Ecological Icon». Bulletin of the Ecological Society of America. 87 (4): 380–386. doi:10.1890/0012-9623(2006)87[380:WMAEI]2.0.CO;2. S2CID 84751493.
  86. ^
    Kendeigh, S. C. (1968). «Victor Ernest Shelford, Eminent Ecologist, 1968». Bulletin of the Ecological Society of America. 49 (3): 97–100. JSTOR 20165761.
  87. ^
    Berryman, A. A. (1992). «The Origins and Evolution of Predator-Prey Theory» (PDF). Ecology. 73 (5): 1530–1535. doi:10.2307/1940005. JSTOR 1940005. Archived from the original (PDF) on 31 May 2010.
  88. ^
    McIntosh, R. P. (1975). «H. A. Gleason-«Individualistic Ecologist» 1882–1975: His Contributions to Ecological Theory». Bulletin of the Torrey Botanical Club. 105 (5): 253–278. doi:10.2307/2484142. JSTOR 2484142.
  89. ^
    Southwood, R.; Clarke, J. R. (1999). «Charles Sutherland Elton. 29 March 1900-1 May 1991». Biographical Memoirs of Fellows of the Royal Society. 45: 131–146. doi:10.1098/rsbm.1999.0043. JSTOR 770268.
  90. ^
    Flannery, M. C. (2003). «Evelyn Hutchinson: A Wonderful Mind». The American Biology Teacher. 65 (6): 462–467. doi:10.1662/0002-7685(2003)065[0462:EHAWM]2.0.CO;2. JSTOR 4451536. S2CID 198969234.
  91. ^
    Edmondson, Y. H. (1991). «In Memoriam: G. Evelyn Hutchinson, 1903–1991». Limnology and Oceanography. 36 (3): 618. doi:10.4319/lo.1991.36.3.0618. JSTOR 2837527.
  92. ^
    Patrick, R. (1994). «George Evelyn Hutchinson (30 January 1903–17 May 1991)». Proceedings of the American Philosophical Society. 138 (4): 531–535. JSTOR 986851.
  93. ^ a b
    Gunderson, L.; Folke, C.; Lee, M.; Holling, C. S. (2002). «In memory of mavericks». Conservation Ecology. 6 (2): 19. doi:10.5751/ES-00423-060219.
  94. ^ a b
    Rotabi, K. S. (2007). «Ecological Theory Origin from Natural to Social Science or Vice Versa? A Brief Conceptual History for Social Work». Advances in Social Work. 8 (1): 113–129. doi:10.18060/135.
  95. ^
    Patten, B. C. (1993). «Toward a more holistic ecology, and science: the contribution of H.T. Odum». Oecologia. 93 (4): 597–602. Bibcode:1993Oecol..93..597P. doi:10.1007/BF00328970. PMID 28313830. S2CID 230601.
  96. ^
    Ewel, J. J. (2003). «Howard Thomas Odum (1924–2002)». Bulletin of the Ecological Society of America. 84 (1): 13–15. doi:10.1890/0012-9623(2003)84[13:HTO]2.0.CO;2.
  97. ^
    Brown, J. H. (1999). «The Legacy of Robert Macarthur: From Geographical Ecology to Macroecology». Journal of Mammalogy. 80 (2): 333–344. doi:10.2307/1383283. JSTOR 1383283.
  98. ^ Levin, Simon A. (1998). «Ecosystems and the Biosphere as Complex Adaptive Systems». Ecosystems. 1 (5): 431–436. doi:10.1007/s100219900037. S2CID 29793247.
  99. ^
    Allee, W. C.; Emerson, A. E.; Park, O.; Park, T.; Schmidt, K. P. (1949). Principles of Animal Ecology. Philadelphia: W. B. Saunders Company.
  100. ^
    Kingsland, S. E. (1985). Modeling Nature: Episodes in the History of Ecology. Chicago: University of Chicago Press.
  101. ^
    Huxley, J. S. (1942). Evolution: The Modern Synthesis. London: Allen & Unwin.
  102. ^
    Kingsland, S. E. (2005). The Evolution of American Ecology: 1890–2000. Baltimore: Johns Hopkins University Press.
  103. ^ a b
    Coker, R. A. (1991). Pioneer Ecologist: The Life and Work of Victor Ernest Shelford, 1877–1968. Washington: Smithsonian Institution Press.
  104. ^
    Shelford, V. E. (1917). «The Ideals and Aims of the Ecological Society of America». Bulletin of the Ecological Society of America. 1: 1–2.
  105. ^
    Forbes, S. A. (1922). «The Humanizing of Ecology». Ecology. 3 (2): 89–92. doi:10.2307/1929143. JSTOR 1929143.
  106. ^
    Adams, C. C. (1935). «The Relation of General Ecology to Human Ecology». Ecology. 16 (3): 316–335. doi:10.2307/1930072. JSTOR 1930072.
  107. ^
    Clements, F. E. (1935). «Experimental Ecology in the Public Service». Ecology. 16 (3): 342–63. doi:10.2307/1930074. JSTOR 1930074.
  108. ^
    Sears, P. B. (1935). Deserts on the March. Norman: University of Oklahoma Press.
  109. ^
    Adams, C. C. (1947). «First Report of the committee of the Ecological Society of America for an Endowment Policy and Program». Ecological Society of America.
  110. ^
    Thomas, W. L. Jr., ed. (1956). Man’s Role in Changing the Face of the Earth. Chicago: University of Chicago Press.
  111. ^
    Hagen, J. B. (1992). An Entangled Bank, The Origins of Ecosystem Ecology. New Brunswick, NJ: Rutgers University Press.
  112. ^
    Dritschilo, W. (2004). Earth Days: Ecology Comes of Age as a Science. iUniverse.
  113. ^
    Miller, R. S. (1965). «Summary Report of the Ecological Study Committee with Recommendations for the Future of Ecology and the Ecological Society of America». Bulletin of the Ecological Society of America. 46: 61–81.
  114. ^
    Dritschilo, W. (2006). «Rachel Carson and Mid-Twentieth Century Ecology». Bulletin of the Ecological Society of America. 87 (4): 357–367. doi:10.1890/0012-9623(2006)87[357:RCAMCE]2.0.CO;2.
  115. ^
    Blair, W. F. (1977). Big Biology: The US/IBP. Stroudsburg, PA: Hutchinson & Ross.
  116. ^
    Kwa, C. (1987). «Representations of Nature Mediating between Ecology and Science Policy: The Case of the International Biological Programme». Social Studies of Science. 17 (3): 413–442. doi:10.1177/030631287017003002. S2CID 143156381.
  117. ^
    Curlin, J. W. (1972). «Courts, Ecology, and Environmental Planning». Ecology. 53 (3): 373–374. doi:10.2307/1934222. JSTOR 1934222.
  118. ^
    Auerbach, S. I. (1972). «Ecology, Ecologists and the E.S.A». Ecology. 53 (2): 204–207. doi:10.2307/1934073. JSTOR 1934073.
  119. ^
    Schindler, D. W. (1976). «The Impact Statement Boondoggle». Science. 192 (4239): 506. Bibcode:1976Sci…192..509S. doi:10.1126/science.192.4239.509. PMID 17745634.
  120. ^ Dritschilo, W. (2016) Magnificent Failure: Frank Egler and the Greening of American Ecology, An Epistolary Biography. Samizdat 2016 (Available from Amazon.com) p 360.
  121. ^ Dritschilo, W. (2016) Magnificent Failure: Frank Egler and the Greening of American Ecology, An Epistolary Biography. Samizdat 2016 (Available from Amazon.com) pp 358-368.
  122. ^
    Dale, V. H.; Barrett, G. W.; Carpenter, A. T.; Hinkle, C. R.; Mitsch, W. J.; Pitelka, L. F. (2000). «ESA’s Professional Certification Program: Let’s Make It Work». Bulletin of the Ecological Society of America. 81 (4): 255–257. doi:10.1890/0012-9623(2000)081[0255:C]2.0.CO;2.
  123. ^
    Suter, G. W. (1981). «Ecosystem Theory and NEPA Assessment». Bulletin of the Ecological Society of America. 62: 186–192.
  124. ^
    Peters, R. H. (1976). «Tautology in Evolution and Ecology». The American Naturalist. 110 (971): 1–12. doi:10.1086/283045. S2CID 84636015.
  125. ^
    Peters, R. H. (1991). A Critique for Ecology. Cambridge: Cambridge University Press.
  126. ^
    Simberloff, D. S.; Abele, L. G. (1976). «Island Biogeography Theory and Conservation Practice». Science. 191 (4224): 285–6. Bibcode:1976Sci…191..285S. doi:10.1126/science.191.4224.285. PMID 17832147. S2CID 12912668.
  127. ^
    Chase, A. (1995). In a Dark Wood: The Fight Over Forests and the Rising Tyranny of Ecology. New York: Houghton Mifflin Company. ISBN 9780395608371.
  128. ^
    Takacs, D. (1996). The Idea of Biodiversity: Philosophies of Paradise. Baltimore: Johns Hopkins University Press. ISBN 9780801854002.
  129. ^ «Theodore Roosevelt and the Environment». PBS. Retrieved 7 April 2014.
  130. ^ «Theodore Roosevelt and conservation». National Park Service. Retrieved 7 April 2014.

Further readingEdit

  • Acot, P. (1998). The European Origins of Scientific Ecology (1800–1901). Gordon and Breach Publishers. ISBN 978-9056991036.
  • Dritschilo, W. (2016). Magnificent Failure: Frank Egler and the Greening of American Ecology, An Epistolary Biography. ISBN 978-1530868568.
  • Egerton, F. N. (1977). History of American Ecology. New York: Arno Press.
  • Egerton, F. N. (1983). «The history of ecology: achievements and opportunities; Part one». Journal of the History of Biology. 16 (2): 259–310. doi:10.1007/BF00124700. PMID 11611238. S2CID 29841753.
  • Egerton, F. N. (2001-2016). A History of the Ecological Sciences. Bulletin of the Ecological Society of America, 57 parts. link.
  • Hagen, J. B. (1992). An Entangled Bank: The Origins of Ecosystem Ecology. New Brunswick, NJ: Rutgers University Press.
  • Kingsland, S. E. (1995). Modeling Nature: Episodes in the History of Population Ecology (2nd ed.). Chicago: University of Chicago Press.
  • McIntosh, R. P. (1985). The Background of Ecology: Concept and Theory. Cambridge: Cambridge University Press. ISBN 9780521270878.
  • Mitman, G. (1992). The State of Nature: Ecology, Community, and American Social Thought, 1900–1950.
  • Real, L. A.; Brown, J. H., eds. (1991). Foundations of Ecology: Classic Papers with Commentary. Chicago: University of Chicago Press.
  • Simberloff, D. (1980). «A succession of paradigms in ecology: Essentialism to materialism and probabilism». Synthese. 43 (1): 3–39. doi:10.1007/BF00413854. S2CID 46962930.
  • Tobey, R. C. (1981). Saving the Prairies: The Life Cycle of the Founding School of American Plant Ecology, 1895–1955. Berkeley: University of California Press. ISBN 9780520043527.
  • von Humboldt, A. (1805). Essai sur la géographie des plantes, accompagné d’un tableau physique des régions équinoxiales, fondé sur les mésures exécutées, depuis le dixième degré de latitude boréale jusqu’au dixième degré de latitude australe, pendant les années 1799, 1800, 1801, 1802, et 1903 par A. De Humboldt et A. Bonpland. Paris: Chez Levrault, Schoelle et Cie. Sherborn Fund Facsimile No.1.
  • von Humboldt, A. (1805). Voyage de Humboldt et Bonpland. Voyage aux régions équinoxiales du nouveau continent. 5e partie. «Essai sur la géographie des plantes». Paris. Facs intégral de l’édition Paris 1905-1834 par Amsterdam: Theatrum orbis terrarum Ltd., 1973.
  • von Humboldt, A. (1807). Essai sur la géographie des plantes. Facs.ed. London 1959. His essay on «On Isothermal Lines» was published serially in English translation in the Edinburgh Philosophical Journal from 1820 to 1822.
  • Weiner, D. (2000). Models of Nature: Ecology, Conservation, and Cultural Revolution in Soviet Russia. Pittsburgh: University of Pittsburgh Press.
  • Wilkinson, D. M. (2002). «Ecology before ecology: biogeography and ecology in Lyell’s ‘Principles’«. Journal of Biogeography. 29 (9): 1109–1115. doi:10.1046/j.1365-2699.2002.00754.x.
  • Worster, D. (1994). Nature’s Economy: A History of Ecological Ideas. Cambridge: Cambridge University Press.

The history of ecology, alludes to the term that has been used for many decades, requires it to refer to the connection that links man with his environment where the so-called ecosystems are described and recounted, in this regard the registered appearances are indicated by several recognized ecologists in different times.

Table of Contents

  • 1 What is the History of Ecology?
    • 1.1 In Classical Antiquity 
    • 1.2 How was it in the XNUMXth and XNUMXth centuries?
    • 1.3 modern ecology
    • 1.4 Recognition of Ecosystems and Preservation of Natural Spaces
  • 2 Ecology in Antiquity
    • 2.1 Aristotle and Hippocrates
  • 3 Who Invented the Term and When?
  • 4 Other Recognized Characters in the History of Ecology
    • 4.1 Anton van Leeuwenhoek
    • 4.2 Rene Antoine Ferchault de Reaumur
    • 4.3 louis reeveur
    • 4.4 Alexander von Humboldt
    • 4.5 Georges-Louis Leclerc
  • 5 Birth of New Disciplines

What is the History of Ecology?

The great findings summarized in the history of ecology reveal many celebrated events, where they expose how the episodes of progress focused on sustaining animal life occurred, as also happened with plant life, which as an effect were summarized both particularities in a collocation chord that indicate that they belong to the same ecosystem.

It should be noted that there are many events that are glimpsed from these centuries, of which practices or customs stand out that belong to those days in which they settled. which turned out to focus more on the various peculiarities of the earth and in the same way of everything that has life on it. In addition to this conception, the episodes found forced an exclusive interaction between man, Wild animals and domesticated.

All findings were cited from the historical background of ecology, to those that have emerged in these recent centuries, in which an enormous interest was subsequently aroused to learn more about it. In this article we will talk about the main men who immersed themselves in the history of ecology, with a firm purpose, to provide clear and precise data that will highlight its great importance.

In Classical Antiquity 

How were your Origins in Biology? The origins of this history are reported to have been closely intertwined in two terms, which were used to identify the beginnings of ecology, to elucidate them it is appropriate to mention these words «Biology» and «Ecology».

The main word «Biology» is linked to Hellenic Greece, which its association is convenient because it is about those times, however, we emphasize that this phrase within its conceptual content reveals that it is intrinsically (internally), is the concept of the word «Ecology», which is the same as its definition, implying that it comes from the word biology,

How was it in the XNUMXth and XNUMXth centuries?

Approximately 12 centuries later, events occurred that were recorded in the history of ecology, where Gilbert White, the famous writer who underlined Selborne’s very enunciated natural history, in 1875 published his book where he quoted with profound approaches analysis of certain genera of animals, in which he highlighted conclusive changes in these.

On the other hand, in the year 1802 the writer «Gottfried Treviranus» he celebrated his work Biologie published as odeir die philoisophie der lebendein natur, in this notable work the phrase of biology was made known. From these assertions the field was opened for related to the development of the species.

modern ecology

Second half of the XNUMXth century and early XNUMXth: Actually among the outstanding ecologists presented in this article there were no discrepancies related to the natural evolution of ecology, on the contrary, they were given the mission of establishing principles that were correct to the well-known theory mentioned by Charles Darwin, these experts of this these centuries, they dedicated themselves to analyzing the changes in the ecosystems in alliance condition.

Recognition of Ecosystems and Preservation of Natural Spaces

Through Ecological Institutions In this part reference is made to a distinguished proponent of ecology «Alfred Tansley”, although it is mentioned that only for four decades he maintained the firm proposal that the name ecosystem be accepted, this continued his purpose, however, later “Raymond Lindeman” appeared, who pointed to the ecosystem as a source of interactions or reciprocities of energy forces.

It was then around the date of 1948 when the conservation and preservation of spaces and natural events was established, accrediting from that year. In the same way, another organization «World Wildife Found» in 1961 managed to institute plans with the same determined purpose and in this way other events took place.

Historia-de-la-Ecología-2

Ecology in Antiquity

As we have mentioned, there were times when incalculable research was devoted to the study of famous ecologists, which we will detail later.

Aristotle and Hippocrates

Of the selected artists, heroes and ecologists we quote in our theme these two distinguished accredited actors from the times of «Ancient Greece».

Who with their consecration to the inclinations based on the investigation of this history registered numerous and considerable documents where their findings were asserted or proven in relation to what is currently the foundation of ecology. It was these two menAristotle and Hippocrates” to whom a deep gratitude is offered.

Who Invented the Term and When?

When it comes to investigating or knowing those professionals who have been part of a story, something particularly turns on that activates you to get to the origin and discover how the events happened, such is the case that today keeps us attentive in this history of ecology , which tells us that it was the outstanding «Ernst Haeckel», who assigned the title of «ecology» on the date of 1869.

It was from this time that he made known where does the word ecology come from and to discover many details that are included in this history of ecology, it is good that you inquire more about it carefully since, in a simple way, we point out that it is an essential part for living beings.

In such a way that its study will awaken the desire to discover more of its history as well as to take care of it, because the mentioned term announces or manifests that it refers to a very significant word for all living beings, this phrase is «Home«This is the valuable meaning of the term «ecology».

Other Recognized Characters in the History of Ecology

These men who speak history some of them were highlighted by the ingenious way of thinking since I place them among the most recognized when it comes to the study of this discipline, to this point it should be noted that they were not only characters dedicated to the field or matter of ecology, they were also representing this scientific expert knowledge of which we will mention some of them.

To refer to these characters, we point out that, due to their outstanding participation in the field of ecology, we can now understand the importance of this science, now we know 5 most prominent characters:

Anton van Leeuwenhoek

As part of the biography of this interesting character, he is placed first in the reference we make to the history of ecology. There were many successes, as well as the works attributed to this native actor from the Netherlands, his inclusion in the called list of ecologists, scientists and others, was due to the qualification for their interest in starting the correct use of the microscope, where other important elements that assigned a title stand out.

Rene Antoine Ferchault de Reaumur

His qualification is due to an outstanding work with quite small beings (insects), with them he was able to specialize in his progress in physics and botany, which led him to obtain high levels where many species were highlighted in which their various characteristics and origin of these animals.

louis reeveur

He is a perfect character since, from the biography of this actor, different stories are told, one of them is that he was part of the ecclesiastical presbyters, as well as a scientist, he dedicated himself to botany, together with other sciences such as to astronomy and meteorology among others. The merits achieved elevated it to be part of this ecology list, the same one that was cited in the 18th century.

Alexander von Humboldt

Much information was obtained from this character about his goals, as was the case with his achievements, which as a scientist managed to possess everything he had aspired to, his incredible findings motivated him to seek other horizons, leaving for the nation of Europe. Likewise, he managed to be an extraordinary explorer with his naturist airs, likewise, he was recognized as an important geographer.

Georges-Louis Leclerc

Due to his notorious abilities, he was sometimes quite questioned since this character managed to develop as a biologist, botanist and naturalist, he was of French descent, in addition to the aforementioned titles he was a student of various species, he was also highlighted in volcanic work, for these affirmations he was granted him a special place in geology.

Birth of New Disciplines

In the so-called birth of innovative lines, five ecology classes were brought together with them, the history of ecology is further affirmed, it should also be noted that the achievement of the different advances obtained is accredited to various explorations that one after another has given birth to the findings to publicize the so-called recent disciplines, which can currently be observed.

First: human ecology

It is related to the events and factors that concern man in a comprehensive environment, likewise, this ecology obeys to link the individual with the environment that surrounds him, of this one can point out: ecosystems, populations and what is created by the same man.

Away: Urban Ecology

It relates and attends at the same time to the possible ability to interact, which is verified by the different urbanized spaces.

Third: The Ecology of Industry

It sets its sights on the different proposals that emanate from ecology, which is closely related to the use of spoils or leftover work from industries, among other particularities that concern the Types of environmental impact.

Fourth: The Ecology of Populations

It is identified to what corresponds to the exclusive demographic part, this in turn is based on two aspects: vegetative — statistical, to the entire family group of the same species.

Fifth: Landscape Ecology

It is aimed at two inclinations, the main one on which it is based is biology and the next is geography, from there the distinguished discipline deals with the various natural landscapes as well as, it is in charge of all the images originated by man.

Historia-de-la-Ecología-10

The content of the article adheres to our principles of editorial ethics. To report an error click here!.

IAS Exam Latest Updates

Ecology is the study of the interrelationships between the earth’s biological systems. Ecology is a relatively recent study and a significant field of biological research, having just gained prominence in the second half of the twentieth century. Ecological thought is influenced by established philosophical currents, notably those in ethics and politics. This article will explain to you about the History of Ecology which will be helpful in preparing the Environment syllabus for the UPSC Civil service exam.

Table of Contents

  1. Ecology
  2. Genesis of Ecology
  3. History of Ecology
    3.1 18th Century
    3.2 19th Century
    3.3 20th Century
  4. Timeline of Ecologists
  5. Ecological History in India
  6. Significance of Ecology
  7. Conclusion
  8. FAQs
  9. MCQs

Ecology

What is Ecology?

  • Ecology can be defined as the scientific study of living organisms and their interactions with one another and with their surroundings.’
  • Ernst Haeckel, a German biologist, initially invented the term ecology in 1869.
  • It is made up of two Greek words: ‘Oikos,’ which means home or estate, and ‘logos,’ which means study.
  • The focus is on the interactions between organisms and environmental components, both abiotic (non-living) and biotic (living) (living).
  • It is concerned with how organisms are shaped by their surroundings, as well as how they utilize environmental resources such as energy flow and mineral cycling.

Genesis of Ecology

Genesis of Ecology

  • Ecology did not have a definite beginning.
  • It developed from the ancient Greeks’ natural history, particularly that of Theophrastus, Aristotle‘s friend and partner.
  • Theophrastus was the first to describe the interrelationships between organisms and their nonliving surroundings.
  • The early studies of plant and animal physiologists created the groundwork for modern ecology.
  • Plant and animal ecology developed independently until American biologists began to stress the interdependence of plant and animal populations as a complete biotic system.

History of Ecology

History of Ecology

18th Century

  • Early in the 18th century, the emerging scientific study of ecology was dominated by two schools of thought.
  • The Arcadian Ecology is the first school of thought, which promotes a «simple, humble life for man» and a harmonious relationship between man and nature.
  • The Imperial Ecology school of thought, on the other hand, believes in establishing man’s domination over nature by the application of reason and hard effort.
  • Until Carolus Linnaeus entered the picture in the early 18th century, both points of view were rivals.
  • Carl-Linnaeus (1758) is credited with establishing the science of taxonomy, or the study of naming and classifying organisms.
  • Linnaeus found and recorded a large number of plants and animals in his book Systema Naturae (PDF).
  • Linnaeus became a staunch proponent of Imperialism, and as a result of his enormous popularity, the Imperial Ecology viewpoint became the prevailing one within the discipline.

19th Century

Early 19th Century

  • Early in the nineteenth century, countries such as the United Kingdom, Portugal and Spain launched a series of voyages to locate and document new natural resources.
  • Alexander von Humboldt (1804) published a large number of species, mostly plants, for which he attempted to explain their geographic distribution using geological data.
  • He released his paper, Idea for Plant Geography, a year later . Many scholars regard Alexander von Humboldt as the father of ecology.
  • Charles Darwin proposed his theory of evolution and adaptation in the year 1859.
  • This idea states that organisms change throughout time as a result of their hereditary qualities and personalities.
  • These evolutionary adaptations allow them to better adapt to their surroundings.
  • These adaptations also increase the likelihood of having more offspring, ensuring survival.
  • The theory of natural selection, also known as «survival of the fittest,» is credited with much of Charles Darwin’s popularity.
  • Charles Darwin reported all of his observations, postulated mechanisms, and discoveries in his book On the Origin of Species by Means of Natural Selection, together with Alfred Russel Wallace, who described the role of natural selection in the genesis of distinct organisms.

Late 19th Century

  • The term «ecology» was introduced by Ernst Haeckel in 1869.
  • Ecology has since evolved into the study of organisms’ interactions with their surroundings.
  • Eduard Seuss coined the word biosphere (from Greek bios = life, sphaira, sphere) to describe the system made up of living beings and their surroundings in 1875.
  • Symbiosis, or the living together of two distinct species in more or less intimate association or close union, was first (1879) described.
  • Eugen Warming founded the field of biogeography in 1895. The study of the geographic distribution of living organisms is known as biogeography.
  • Abiotic factors such as wind, fire, temperature, and so on are investigated in this area.
  • The discovery of the nitrogen cycle by Antoine Lavoisier and Theodore de Saussure considerably aided the study of ecology.
  • The revelation of how nitrogen is cyclically synthesized into various forms paved the way for a better knowledge of nutrient intake in live creatures.
  • Nitrogen is regarded as one of the major nutrients needed for the existence of all living species.

20th Century

Early 20th Century

  • In the year 1920, the field of human ecology was born.
  • The purpose of this field was to elevate ecological science’s importance in urban and residential planning.
  • In his book The Biosphere, Vladimir Vernadsky in 1926 described the biosphere as the worldwide ecological system that includes all living beings and their relationships, as well as their interactions with the lithosphere, geosphere, hydrosphere, and atmosphere.
  • The term ecosystem was coined by Arthur Tansley in 1935 to describe the biological community of interacting species and their physical environment.
  • As a result, ecology has evolved into the science of ecosystems.
  • Patrick researched the interconnectedness of organisms in 1940, focusing on freshwater ecosystems. She devised ways for assessing a stream’s health.

Mid 20th Century

  • People became aware of the detrimental impacts of pollution on ecosystems around 1950.
  • The first ecology textbook was written by Eugene Odum and Howard Odum in 1953, and ecology became a university course.
  • Ecology got broad public attention in 1960 as a result of increasing concern about the state of the environment.
  • James Lovelock in 1970 coined the phrase Gaia, which refers to the concept that the entire earth is one living entity capable of ensuring its own survival even if people destroy it.

Late 20th Century

  • In 1971, UNESCO began the Man and Biosphere study programme with the purpose of raising human awareness of their interaction with nature.
  • Conservation Biology was created as a study devoted to environmental management in 1978.
  • Currently, man’s ambition to restore and protect the planet’s environment drives the pursuit of continued ecological research.
  • Many questions about various biological phenomena remain unresolved, therefore research continues.

Timeline of Ecologists

Timeline of Ecologists

Antonie van Leeuwenhoek (1632–1723)
  • The first to construct the concept of food chains.
Carl Linnaeus (1707–1778)
  • A well-known naturalist and the founder of science on natural economics.
Alexander Humboldt (1769–1859)
  • The ecological gradient of latitudinal biodiversity growth toward the tropics was described for the first time by him.
Charles Darwin (1809–1882)
  • Founder of the natural selection idea of evolution, as well as ecological study of soils.
Herbert Spencer (1820–1903)
  • The term «survival of the fittest» was created.
Karl Möbius (1825–1908)
  • The notion of ecological community, also known as biocenosis or living community, was first developed.
Ernst Haeckel (1834–1919)
  • The term “ecology” was coined by him, and he popularized studies on the relationship between ecology and evolution.
Vladimir Vernadsky (1869–1939)
  • Invented the concept of the biosphere.
Henry C. Cowles (1869–1939)
  • In the field of ecological succession, Henry pioneered studies and conceptual development.
A. G. Tansley (1871–1955)
  • In 1936, he was the first to develop the word «ecosystem,» and he was a well-known researcher.
Henry Gleason (1882–1975)
  • Founder of the individualistic notion of ecology, early ecology pioneer, quantitative theorist, author, and author.
Charles S. Elton (1900–1991)
  • Known as the Father of Animal Ecology, he invented the food chain and niche concepts, as well as writing the seminal Animal Ecology literature.
G. Evelyn Hutchinson (1903–1991)
  • The niche concept was proposed by him in detail.

Ecological History in India

Ecological History in India

  • The origins of ecology may be traced back to the dawn of civilization in India.
  • For survival in early societies, each individual was required to have a thorough understanding of its own surroundings, including the forces of nature as well as the plants and animals that are present in the same.
  • The principles of ecology are mentioned in Indian classical old writings.
  • Many references to ecological principles may be found in the Vedas, Samhitas, Brahmanas, and Aranyakas-Upanishads.
  • The Charaka Samhita, an Indian medical treatise, and the Susruta Samhita, a surgical manual, reveal that humans in this period had an excellent grasp and knowledge of plant and animal ecology.
  • Thus it was finally realized that ecology is the scientific study of living species’ interactions with one another and with their environment.

Significance of Ecology

Significance of Ecology

  • Ecology enables us to comprehend the impact of our actions on the ecosystem.
  • It demonstrates to individuals the degree of environmental devastation we inflict.
  • The destruction of land and the environment has resulted from a lack of understanding of ecology.
  • Certain species have also become extinct or endangered as a result of it. Dinosaurs, white sharks, mammoths, and so on.
  • As a result, studying the environment and creatures aids us in protecting them from harm and danger.
  • Ecological knowledge allows us to determine which resources are required for the survival of various organisms.
  • For their growth and development, all creatures require energy. Due to a lack of ecological awareness, energy resources such as light, nourishment, and radiation are over-exploited, resulting in their depletion.

Conclusion

Conclusion

Ecology is a multidisciplinary academic study whose objective is to comprehend organisms’ performance, distribution, and abundance, as well as their interactions with other species and their abiotic environment. Ecology thus provides the basic knowledge to address key fundamental scientific questions as well as applied issues such as how to manage our natural world in order to secure health, production, and biodiversity at local to global scales on our planet, with its focus on the functioning and resilience of individuals, populations, and ecosystems.

FAQs

FAQs

Question: Who is the father of ecology?

Answer:

Eugene Odum is recognized as the father of contemporary ecology throughout science, and the University of Georgia honors him as the founder of the Eugene P. Odum Institute.

Question: Who founded the word ecology?

Answer:

The German scientist Ernst Haeckel coined the term ecology (German: kologie) in 1866, and it became a rigorous discipline in the late 19th century. Modern ecological theory is built on evolutionary ideas like adaptation and natural selection.

Question: Why is ecology important for the future?

Answer:

Ecology enriches our planet and is necessary for human happiness and development. It adds to our understanding of people’s and nature’s connection, which is critical for food production, clean air and water, and biodiversity conservation in a changing climate.

MCQs

MCQs

Question: Consider the following statements.

  1. Arthur G Tansley was the first to develop the word ecology.
  2. The term ecosystem was introduced by Ernst Haeckel.

Which of the statement(s) given above is/are correct?

(a) 1 only

(b) 2 only

(c) Both 1 and 2

(d) Neither 1 nor 2

Answer: (d) See the Explanation

  • In 1936, Arthur G Tansley was the first to develop the word «ecosystem,» and he was a well-known researcher.
  • The term «ecology» was introduced by Ernst Haeckel in 1869.
  • Ecology has since evolved into the study of organisms’ interactions with their surroundings.

Therefore, option (d) is the correct answer.

Question: Who first constructed the concept of food chains?

(a) Herbert Spencer

(b) Ernst Haeckel

(c) Antonie van Leeuwenhoek

(d) A. G. Tansley

Answer: (c) See the Explanation

  • Antonie van Leeuwenhoek (1632–1723) was the first to construct the concept of food chains.

Therefore, option (c) is the correct answer.

*The article might have information for the previous academic years, please refer the official website of the exam.

How likely are you to recommend Prepp.in to a friend or a colleague?

Not so likely

Highly likely

UPSC CSE (IAS) 2023 Mock Test Series

10 Apr 2023 Daily CA Quiz for UPSC & State PSCs

05 Apr 2023 Daily CA Quiz for UPSC & State PSCs

View More

Full Test-24: UPSC CSE 2023 (Prelims Paper 1: General Studies)

Full Test-09: UPSC CSE 2023 (Prelims Paper 1: General Studies)

UPSC CSE 2022 (Prelims Paper-1: General Studies) Previous Year Paper (5-June-2022)

UPSC CSE 2022 (Prelims Paper-2: CSAT) Previous Year Paper (05-Jun-2022)

View More

Эколо́гия (от др.-греч. οἶκος — обиталище, жилище, дом, имущество и λόγος — понятие, учение, наука) — наука о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой. Термин впервые предложил немецкий биолог Эрнст Геккель в 1866 году в книге «Общая морфология организмов» («Generelle Morphologie der Organismen»).

Эрнст Геккель — экологический плакат

Содержание

  • 1 Определения
    • 1.1 Сложности определения экологии
  • 2 История науки
    • 2.1 Античность
    • 2.2 Новое время
      • 2.2.1 Первая половина XIX века
      • 2.2.2 Экология животных после Дарвина и Геккеля
    • 2.3 Современная классическая экология
  • 3 Связи экологии с другими науками
  • 4 Методология экологии
  • 5 Учёные
  • 6 Специализированные журналы
  • 7 В культуре
  • 8 См. также
  • 9 Примечания
  • 10 Литература

Определения

Эрнст Геккель, автор термина «экология»

Современное значение понятия экология имеет более широкое значение, чем в первые десятилетия развития этой науки. В настоящее время чаще всего под экологическими вопросами ошибочно понимаются, прежде всего, вопросы охраны окружающей среды. Во многом такое смещение смысла произошло благодаря всё более ощутимым последствиям влияния человека на окружающую среду, однако необходимо разделять понятия ecological («относящееся к науке экологии») и environmental («относящееся к окружающей среде»). Всеобщее внимание к экологии повлекло за собой расширение первоначально довольно чётко обозначенной Эрнстом Геккелем области знаний (исключительно биологических) на другие естественнонаучные и даже гуманитарные науки.

Классическое определение экологии[1]: наука, изучающая взаимоотношения живой и неживой природы.

Второе определение дано на 5-м Международном экологическом конгрессе (1990) с целью противодействия размыванию понятия экологии, наблюдаемому в настоящее время. Однако это определение полностью исключает из компетенции экологии как науки аутэкологию (см. ниже), что в корне неверно.

Вот некоторые возможные определения науки «экология»:

  • Экология — познание экономики природы, одновременное исследование всех взаимоотношений живого с органическими и неорганическими компонентами окружающей среды… Одним словом, экология — это наука, изучающая все сложные взаимосвязи в природе, рассматриваемые Дарвином как условия борьбы за существование.[2]
  • Экология — биологическая наука, которая исследует структуру и функционирование систем надорганизменного уровня (популяции, сообщества, экосистемы) в пространстве и времени, в естественных и изменённых человеком условиях.
  • Экология — наука об окружающей среде и происходящих в ней процессах

Сложности определения экологии

  • Неопределённость границ дисциплин и взаимоотношения со смежными дисциплинами
  • Неустоявшиеся представления о структуре дисциплины.
  • Деление экологии на общую экологию и частную экологию
  • Подразделение экологии на четыре отдела — экологию особей, популяций, биогеоценозов и экосистем
  • Место экологии популяции при разделении на аутэкологию и синэкологию
  • Различия в терминологии между экологами растений и экологами животных.

История науки

Дюны на озере Мичиган, Индиана, который стимулировали развитие теории Cowles Сукцессии.

Уже с давних времён люди стали замечать различные закономерности во взаимодействии животных друг с другом и с окружающей средой. Однако, в те времена даже биология не была отдельной наукой, являясь частью философии.

Античность

Первые описания экологии животных можно отнести к индийским и древнегреческим трактатам:

  • Индийские трактаты «Рамаяна», «Махабхарата» (VI—I века до н. э.) — Образ жизни зверей (более 50 видов), места обитания, питание, размножение, суточная активность, поведение при изменениях природной обстановки.
  • Аристотель — «История животных» — экологическая классификация животных, среда обитания, тип движения, места обитания, сезонная активность, общественная жизнь, наличие убежищ, использование голоса.
  • Теофраст — даны основы геоботаники, а также описано приспособительное значение изменений в окраске животных.
  • Плиний Старший — «Естественная история» — представлен экономический характер зооэкологических представлений.

Древние греки в целом представляли себе жизнь как нечто, не требующее понимания и адаптации, что близко к современным экологическим представлениям[3].

Новое время

В Новое время, которое характеризуется подъёмом в области научного знания, экологические закономерности выявлялись учёными-энциклопедистами, зачастую весьма далекими от биологии в своих основных исследованиях.

  • Р. Бойль — им проведён один из первых экологических экспериментов — влияние атмосферного давления на животных, стойкость к вакууму водных, земноводных и др. пойкилотермных животных.
  • Антони Ван Левенгук — описание пищевых цепей, регулирование численности популяций.
  • Дэрем — «Физико-теология» (1713) — в этой работе впервые описан термин баланс в смысле регуляции численности животных.
  • Р. Брэдли — впервые экология описывается количественно — роль воробьиных птиц в истреблении вредных насекомых.
  • Рене Реомюр — «Мемуары по естественной истории насекомых» — рассматриваются количественные климатические факторы — постоянство суммы средних дневных температур в тени для сезонного периода в жизни организмов.
  • К. Линней — «Экономия природы», «Общественное устройство природы» — описана концепция равновесия в природе, применён системный подход к природе, оценено ведущее влияние климатических условий, описаны фенологические наблюдения — гибель одних организмов как средство для существования других, сравнение природы с человеческой общиной.
  • Ж. Бюффон — «Естественная история» — описано влияние факторов среды, исследования по популяционной экологии — влияние климата, характера местности и других внешних условий на популяции. Описан рост численности некоторых животных в геометрической прогрессии.
  • С. П. Крашенинников (1713—1755) «Описание земли Камчатки» (1755) — частная экология животных, описание растений, образ жизни.
  • И. И. Лепёхин «Дневные записки путешествия доктора и Академии наук адъюнкта Ивана Лепёхина по разным провинциям Российского государства», перевод Бюффона. Биологические характеристики зверей и птиц. Зависимость существования и географического распределения животных от климатических условий и растительности Зависимость численности, распределения, плодовитости и миграций белки, кедровки и прочих от урожая кедровых орехов и других хвойных пород.
  • Петер Симон Паллас «Путешествия по различным провинциям Российского государства», «Zoographia rosso-asiatica» — экологический подход к изучению животных (влияние внешних условий на животную жизнь). Климатология и физическая география, описание частной экологии грызунов. Программа наблюдений периодических явлений в популяциях животных.
  • В. Ф. Зуев (ученик П. С. Палласа) «Начертания естественной истории» — первый в России школьный учебник. Описания экологии белки.
  • Э. Циммерман — Зоогеография (1777) — Зависимость распространения млекопитающих от климата как по причине его прямого влияния, так и через растительность, как важнейший источник пищи для животных.

Первая половина XIX века

  • Ж. Б. Ламарк — «Философия зоологии» — Описано взаимодействия организм — среда.
  • Т. Фабер «О жизни птиц далекого севера» (1825) — экология птиц.
  • Константин Глогер — 1833 Правило Глогера (географические расы животных в тёплых и влажных регионах пигментированы сильнее, чем в холодных и сухих регионах), заложены начала современной зоогеографии. Влияние климата на птиц — поведение, выбор местообитания, степень оседлости, окраску.
  • В. Эдвардс — «Влияние физических агентов на жизнь» (1824) — сравнительная экологическая физиология. Эксперименты по влиянию температуры и водной среды на развитие головастиков лягушки. Влияние температуры, влажности, света и др. на дыхание, кровообращение, температуру, рост тела у рыб, земноводных, рептилий, птиц, зверей, человека.
  • Спейн (1802) — эксперименты с длиной светового дня и яйценоскостью кур.
  • Е. П. Менетрие — изучение вертикального распределения животных в горах Кавказа.
  • Г. Бергхаус — «Всеобщий зоологический атлас» (1851) — сочетание климатических условий и биотических отношений. Зоогеографическое районирование на основе распространения хищных млекопитающих (хищники интегрируют совокупное воздействие элементов природы).
  • Ш. Морран (1840) — закрепление понятия «Фенология».
  • К. Хойзингер (1822) — разделение зоологии на зоографию и зоономию. Изучение причин и законов возникновения и существования отдельных животных и всего животного царства.
  • Генрих Георг Бронн (1850) — «Экономия животных»
  • Э. А. Эверсманн (1794—1860), М. Н. Богданов — «Естественная история Оренбургского края» (1840—1866) — географическая зональность смены ландшафтов на основе изменений характера почвы. Биоценотические отношения между животными. Экологический оттенок в описаниях групп животных. Оценка экономического значения животных. Характеристика пустынных экосистем — бедность фауны при обилии особей. Прообраз в описаниях грызунов, как представителей R-стратегов. Морфологические приспособления к условиям обитания — тушканчики на разных грунтах, адаптивное строение и добывание пищи у дятлов. Экономия природы.
  • К. М. Бэр — экспедиция на Новую Землю. Основы современной теории динамики популяций рыб.
  • А. Ф. Миддендорф — «Путешествие на север и восток Сибири», «Сибирская фауна» — зоологическая география. Природа, как единое целое. Ландшафтно-экологический подход. Экоморфология и её приспособительное значение. Изопиптезы. Сезонные миграции птиц. Значение кочёвок птиц и зверей. Экология леммингов. Влияние полярного дня на морфофизиологические функции. Криптическая роль окраски. Сопряженность ареалов.
  • К. Ф. Рулье и Н. А. Северцов — основоположники российской экологии животных:
Карл Францевич Рулье — лекция «Жизнь животных по отношению к внешним условиям» (1852). Экологическая концепция, метод экологического изучения животных.

Прямые и обратные явления жизни. Внутривидовые и межвидовые отношения животных. Существование общин (популяций). Проблема адаптации, морфобиологические особенности: жизненные формы животных, экологическая морфология, зоопсихология. Термины: зооэтика — зоогнозия, зообиология = этология Сент-Илера (от Милля).
Н. А. Северцов «Периодические явления в жизни зверей, птиц и гад Воронежской губернии» — синэкологический аспект. Методический аспект — эколого-географический метод. Необходимость биоценологического подхода «местные мелкие фауны»: «Каждое явление мы изучаем у всех животных, у которых заметили его. Порядок в описании явлений определяется их естественной последовательностью — от весны до весны, только явления линяния отделены от прочих, современных им».
  • Жоффруа Сент-Илер «Естественная история органического мира» — этология = зоопсихология + экология.
  • Ч. Дарвин —
«Путешествие натуралиста вокруг света». Экономия природы. Объяснение паразитизма кукушки. Гибель крупных животных от катастрофических причин. Теория происхождения коралловых рифов.
«Происхождение видов». Синэкологические взаимоотношения, как наиболее важные. Классификация взаимоотношений организмов. Продуктивность и состав сообществ. «Прочно укоренившееся заблуждение — считать физические условия за наиболее важные». Демография популяций. Синэкология: Взаимосвязь кошки — мыши — шмели-клевер и его ареал. Роль птиц в расселении семян — количественные исследования. Адаптивное строение цветка энтомофильных орхидей. Эколого-морфологический анализ челюстного аппарата гусеобразных.
  • Э. Геккель и формирование экологии как особой отрасли науки:
«Всеобщая морфология организмов». Биология делится на: морфологию (биостатику) и физиологию (биодинамику), а для узкого понимания термина биологии мы вводим термин экология, синоним — биономия — «Общие основы науки об органических формах, механически основанной на теории эволюции, реформированной Чарлзом Дарвином».
Экология — наука об экономии, об образе жизни, о внешних жизненных отношениях организмов друг с другом и т. д. (1 глава) = этологии Сент-Илера, хотя сам Геккель этого не знал.
Под экологией мы понимаем общую науку об отношениях организмов с окружающей средой, куда мы относим в широком смысле все условия существования (19 глава). Экология — физиологическая дисциплина: форономия (общая физиология) — эргология (физиология функций) и перилогия (физиология отношений) — экология и хорология. Отсутствие обязательной корреляции между плодовитостью, численностью и масштабами географического распространения (глупыш и многие плодовитые виды). Для каждого отдельного вида в экономии природы имеется только определённое число мест (=экологические ниши Элтона). В одном месте может существовать тем большее количество животных индивидов, чем более разнообразна их природа.

Экология животных после Дарвина и Геккеля

  • Форбс (1895) — замечание о понятии науки экология. Определение: наука об отношениях животных и растений к другим живым существам и ко всему их окружающему.
  • К. А. Тимирязев. Противник термина экология (биономия, биология в узком смысле).
  • М. А. Мензбир «Птицы России» — революция в зоологии: экологический подход к составлению систематических зоологических сводок.
  • М. Н. Богданов (1841—1888) «Птицы и звери Черноземной полосы Поволжья, долины средней и нижней Волги» («Биогеографические материалы» 1871) — широко используется понятие биоценоза (введённого К. А. Мёбиусом в 1877 году[4]). Курс лекций зоологии в Петербургском университете с широкой биологической точки зрения, введена концепция саморегуляции биоценоза.

Современная классическая экология

Современная экология — сложная, разветвлённая наука. Ч. Элтон использовал концепции трофической (пищевой цепи), пирамиды численности, динамики численности[5].

Полагают, что вклад в теоретические основы современной экологии внёс Б. Коммонер, сформулировавший основные 4 закона экологии:

  1. Всё связано со всем
  2. Ничто не исчезает в никуда
  3. Природа знает лучше — закон имеет двойной смысл — одновременно призыв сблизиться с природой и призыв крайне осторожно обращаться с природными системами.
  4. Ничто не даётся даром (вольный перевод — в оригинале что-то вроде «Бесплатных обедов не бывает»)

Второй и четвёртый законы по сути являются перефразировкой основного закона физики — сохранения вещества и энергии. Первый и третий законы — действительно основополагающие законы экологии, на которых должна строиться парадигма данной науки. Основным законом является первый, который может считаться основой экологической философии. В частности, эта философия положена в основу понятия «глубокая экология» в книге «Паутина жизни» Фритьофа Капры.

В 1910 г. на Третьем Международном ботаническом конгрессе в Брюсселе были выделены три подраздела экологии:

  • Аутэкология — раздел науки, изучающий взаимодействие индивидуального организма или вида с окружающей средой (жизненные циклы и поведение как способ приспособления к окружающей среде).
  • Демэкология — раздел науки, изучающий взаимодействие популяций особей одного вида внутри популяции и с окружающей средой.
  • Синэкология — раздел науки, изучающий функционирование сообществ и их взаимодействия с биотическими и абиотическими факторами.

Также выделяют геоэкологию, биоэкологию, гидроэкологию, ландшафтную экологию, этноэкологию, социальную экологию, химическую экологию, радиоэкологию, экологию человека, антэкологию и др.
В связи с многогранностью предмета и методов исследований в настоящее время некоторые ученые рассматривают экологию как комплекс наук, который изучает функциональные взаимосвязи между организмами (включая человека и человеческое общество в целом) и окружающей их средой, круговорот веществ и потоков энергии, делающих возможность жизнь[6].

Связи экологии с другими науками

Экология, как комплекс наук, тесно связана с такими науками, как биология, химия, математика, география, физика, эпидемиология, биогеохимия.

Методология экологии

Методологический подход к экологии как к науке позволяет выделить предмет, задачи и методы исследований.

Объекты исследования экологии — в основном, системы выше уровня отдельных организмов: популяции, биоценозы, экосистемы, а также вся биосфера. Предмет изучения — организация и функционирование таких систем.

Главная задача прикладной экологии — разработка принципов рационального использования природных ресурсов на основе сформулированных общих закономерностей организации жизни.

Методы исследований в экологии подразделяются на полевые, экспериментальные и методы моделирования.

Полевые методы представляют собой наблюдения за функционированием организмов в их естественной среде обитания.

Экспериментальные методы включают в себя варьирование различных факторов, влияющих на организмы, по выработанной программе в стационарных лабораторных условиях.

Методы моделирования позволяют прогнозировать развитие различных процессов взаимодействия живых систем между собой и с окружающей их средой

Учёные

Следующие люди внесли существенный вклад в представление об эволюции и экологии:

  • Валдас Адамкус
  • Владимир Вернадский
  • Эрнст Геккель
  • Виктор Горшков
  • Зимов, Сергей Афанасьевич
  • Иоганзен, Бодо Германович
  • Фредерик Клементс
  • Барри Коммонер
  • Кочуров, Борис Иванович
  • Лачинов, Дмитрий Александрович
  • Бьорн Ломборг
  • Мёбиус, Карл Август
  • Мюри, Адальберт-Адольф
  • Юджин Одум
  • Эрик Пианка (англ. Eric Pianka)
  • Раменский, Леонтий Григорьевич
  • Реймерс, Николай Фёдорович
  • Скоу, Йоаким Фредерик
  • Сукачёв, Владимир Николаевич
  • Уиттекер, Роберт Хардинг
  • Шварц, Станислав Семёнович

Специализированные журналы

Подробнее по этой теме см.: Категория:Журналы по экологии.

  • Journal of Ecology
  • Journal of Animal Ecology
  • Экология (журнал)
  • Сибирский экологический журнал
  • Экологическая химия

В культуре

  • Дом (документальный фильм)

См. также

  • Ресурсо-ориентированная экономика
  • История экологии
  • Охрана окружающей среды
  • Охрана природы
  • Список экологических организаций
  • Экологическая безопасность
  • Экологические преступления
  • Экологический след
  • Экология насекомых
  • Энвайронментализм
  • Геоэкология
  • Экогеология
  • Социальная экология (наука)
  • Эколингвистика
  • Геоэтика

Примечания

  1. Геккель (1866). Общая морфология организмов. нем. Generalle Morphologie der Organismen
  2. Это определение Э. Геккеля написано во времена, когда экология была ещё исключительно биологической наукой. Нынешнее понимание экологии шире.
  3. Benson, K. R. (2000). «The emergence of ecology from natural history». Endeavor 24 (2): 59–62. DOI:10.1016/S0160-9327(99)01260-0. PMID 10969480.
  4. K. A. Möbius. Die Auster und die Austernwirthschaft. — 1877.
  5. Ч. Элтон. Экология животных. — М. СПб.: Биомедгиз, 1934. — 82 с.
  6. Ахатов А. Г. / Akhatov A.G. Экология. Энциклопедический словарь / Ecology. Encyclopaedic Dictionary. — Казань=Kazan, ТКИ, Экополи, 1995. — С. 286—287. — 5000 экз. — ISBN 5-298-00600-0

Литература

П: Портал «Экология»
wikt: экология в Викисловаре?
q: Экология в Викицитатнике?
commons: Ecology на Викискладе?
n: Категория:Экология в Викиновостях?
  • Ахатов А. Г. Экология. Энциклопедический словарь.=Akhatov A.G. Ecology. Encyclopaedic Dictionary.- Казань=Kazan, ТКИ, Экополис, 1995. — 368 с. (тираж 5000), ISBN 5-298-00600-0
  • Ахатов А. Г. Экология и международное право.=Ecology & International Law.- М.: АСТ-ПРЕСС, 1996. — 512 с. (тираж 1000), ISBN 5-214-00225-4
  • Одум, Юджин, Экология. 2 тома. — М.: Мир, 1986
  • Одум, Юджин, Основы экологии. — М., 1975—740 с. Пер. с англ. изд., 1971.
  • Будыко, Михаил Иванович, Глобальная экология. — М., 1972. — 327 с.
  • Пианка Эрик. Эволюционная экология. — М.: Мир, 1981. — 399 с.
  • Begon, M.; Townsend, C. R., Harper, J. L. (2006). Ecology: From individuals to ecosystems. (4th ed.). — Blackwell. ISBN 1-4051-1117-8.
 Просмотр этого шаблона Экология
Общее

Общая экология • Прикладная экология • Социальная экология • Интегральная экология • Промышленная экология • Медицинская экология • Охрана природы • Красная книга • Экологический след • История экологии • Геоэкология • Экология насекомых • Устойчивый транспорт • Защита природы (Энвайронментализм)

Глобальные проблемы

Глобальное потепление • Глобальное затемнение • Проблема народонаселения • Выхлопные газы • Озоновые дыры • Опустынивание • Обезлесение • Выбросы • Экологические катастрофы

Организации и движения

Всемирный фонд дикой природы • Международный союз охраны природы • Гринпис • Международный Зелёный Крест • Социальная экология (движение) • Earth First! • Движение за добровольное исчезновение человечества

Экологическое право

Международное право охраны окружающей среды • Экологические преступления • Экологическая безопасность • Декларация Рио

Законы

Биоклиматический закон Хопкинса • Закон оптимума • Закон толерантности Шелфорда • Закон ограничивающего фактора

Экологические акции

Час Земли

Дни

Международный день предотвращения эксплуатации окружающей среды во время войны и вооружённых конфликтов • Международный день действий против плотин • Международный день охраны озонового слоя • Международный день Матери-Земли • Всемирный день борьбы с опустыниванием и засухой • Всемирный день водно-болотных угодий • Всемирный день водных ресурсов • Всемирный день охраны мест обитаний • Всемирный день окружающей среды • Всемирный день защиты животных • Всемирный день защиты слонов в зоопарках • Всемирный день океанов • Всемирный день моря • Всемирный день китов • Всемирный день Хабитат • День Земли • День слона • День эколога • День Балтийского моря • Дни защиты от экологической опасности • День заповедников и национальных парков • День работников леса и лесоперерабатывающей промышленности • День посадки деревьев

Альтернативная энергетика

Биотопливо • Возобновляемые ресурсы • Возобновляемая энергия • Геотермальная энергетика • Солнечная энергетика

Загрязнения

Загрязнение атмосферы • Загрязнение пресных вод • Загрязнение океанов • Загрязнение почв • Химическое загрязнение • Световое загрязнение • Шумовое загрязнение • Электромагнитное загрязнение • Радиоактивное заражение • Загрязняющее вещество • Загрязнитель

 Просмотр этого шаблона Разделы биологии

Анатомия · Биоакустика · Биоинформатика · Биологическая систематика · Биология океана · Биология развития · Биология человека · Биофизика · Биохимия · Ботаника · Вирусология · Возникновение жизни · Генетика · Геномика · Гидробиология · Гистология · Зоология · Зоопсихология · Космическая биология · Криобиология · Математическая биология · Микология · Микробиология · Молекулярная биология · Палеонтология · Паразитология · Патология · Протистология · Таксономия · Физиология · Цитология · Эволюционная биология · Экология · Этология

 Просмотр этого шаблона Земля
История Земли Возраст Земли • Геологическая история Земли • Геохронологическая шкала • История жизни на Земле • Оледенение Земли • Парадокс слабого молодого Солнца • Теория гигантского столкновения • Хронология эволюции The Earth seen from Apollo 17.jpg
География
и геология
Австралия • Азия • Антарктида • Африка • Европа • Северная Америка • Южная Америка • ✰Атлантический океан • ✰Индийский океан • ✰ Северный Ледовитый океан • ✰ Тихий океан • Южный океан • Атмосфера • Гидросфера • Дрейф континентов • Земная кора • Континент • Кора • Мантия • Океан • Структура Земли • Суперконтинент • Тектоника плит • Фигура Земли • Ядро
Окружающая
среда
Биом • Биоразнообразие • Биосфера • Дикая местность (англ.) • Климат • Природа • Природная зона • Сохранение биоразнообразия (англ.) • Экологическая ниша • Экология✰ Экосистема
См. также Будущее Земли • ✯ Гипотетические естественные спутники Земли • День Земли • Мир • Стихийное бедствие • Суточное вращение Земли • Кольца Земли

Аспект истории, охватывающий изучение экологии

Экология — новая наука и считается отраслью биологическая наука, получившая известность только во вторая половина 20 века. Экологическая мысль является производным от устоявшихся течений в философии, особенно от этики и политики. Его история восходит к 4 веку. Один из первых из первых, чьи труды сохранились, возможно, был Аристотель или, возможно, его ученик Теофраст, оба из которых интересовались многими видами животных и растений. Теофраст описал взаимоотношения между животными и окружающей средой еще в 4 веке до нашей эры. Значительное развитие экология получила в 18-19 веках. Это началось с Карла Линнея и его работы с экономией природы. Вскоре появились Александр фон Гумбольдт и его работа по ботанической географии. Александр фон Гумбольдт и Карл Мебиус затем внесли свой вклад в понятие биоценоза. Работа Евгения Варминга в области экологической географии растений привела к основанию экологии как дисциплины. Работа Чарльза Дарвина также внесла свой вклад в науку об экологии, и Дарвина часто приписывает прогресс в этой дисциплине больше, чем кто-либо другой за всю ее молодую историю. Экологическая мысль еще больше расширилась в начале 20 века. Основные вклады включали: Эдуард Зюсс ‘и Владимир Вернадский, работа с биосферой, экосистема Артура Тэнсли, животное Чарльза Элтона Экология, и Генри Коулз экологическая сукцессия. Экология повлияла на социальные и гуманитарные науки. Экология человека зародилась в начале 20 века и признала человека экологическим фактором. Позже Джеймс Лавлок выдвинул взгляды на Землю как макроорганизм с гипотезой Гайи. Сохранение возникло из науки об экологии. Важные деятели и движения включают Шелфорд и ESA, Закон о национальной экологической политике, Джордж Перкинс Марш, Теодор Рузвельт, Стивен А. Форбс и пост- Пылесборник консервация. Позже в 20-м мировом мировом сообществе сотрудничали в изучении воздействия на биосферу и среду Земли.

История экологии переплетается с историей по охране природы, в частности с основанием Охраны природы.

Содержание

  • 1 Экологические шумы 18 и 19 веков
    • 1.1 Аркадские и Imperial Ecology
    • 1.2 Карл Линней и Systema Naturae
    • 1.3 Ботаническая география и Александр фон Гумбольдт
    • 1.4 Понятие биоценоза: Уоллес и Мебиус
    • 1.5 Потепление и основание экологии как дисциплины
    • 1.6 Мальтузианское влияние
    • 1.7 Дарвинизм и экологическая наука
  • 2 Начало 20-го века ~ Развитие экологической мысли
    • 2.1 Биосфера — Эдуард Зюсс и Владимир Вернадский
    • 2.2 Экосистема: Артур Тэнсли
    • 2.3 Экологическая преемственность — Генри Чендлер Коулз
    • 2.4 Экология животных — Чарльз Элтон
    • 2.5 Г. Эвелин Хатчинсон — отец современной экологии
  • 3 Переход 20 века к современной экологии
  • 4 Хронология экологов
  • 5 Экологическое влияние по общественным и гуманитарным наукам
    • 5.1 Эко человека логика
    • 5.2 Джеймс Лавлок и гипотеза Гайи
    • 5.3 История и взаимосвязь между экологией, сохранением и экологическими движениями
    • 5.4 Сохранение и экологические движения — 20 век
    • 5.5 Рузвельт и американская охрана природы
    • 5.6 Экология и глобальная политика
  • 6 См. также
  • 7 Ссылки
  • 8 Дополнительная литература

Экологический шепот 18-го и 19-го веков

Аркадская и имперская экология

В начале восемнадцатого века, До Карла Линнея две конкурирующие школы мысли доминировали в растущей научной дисциплине экологии. Во-первых, Гилберту Уайту «пастырь-натуралист» приписывают развитие и одобрение взглядов на экологию Аркадии. Экология Аркадии выступает за «простую, скромную жизнь человека» и за гармоничные отношения с людьми и природой. Аркадской точки зрения противостоит идеология Фрэнсиса Бэкона, «имперская экология». Империалисты работа «установить путь осуществление разума и упорный труд, доминирование человека над природой». Имперские экологи также считают, что человек должен стать доминирующей фигурой над природой и всеми другими организмами, как «когда-то наслаждались в Эдемском саду». Обе точки зрения продолжали свое соперничество в начале восемнадцатого века, пока Карл Линней не поддержал империализм; и вскоре, благодаря Линнея, имперская экология стала доминирующим взглядом в этой дисциплине.

Карл Линней и Systema Naturae

Карл Линней, шведский натуралист, хорошо известен своими работами в области систематики, но его идеи помогли заложить основу для современной экологии. Он разработал систему наименований, состоящую из двух частей, для классификации растений и животных. Биномиальная номенклатура использовалась для описания, описания и наименования различных родов и видов. Скомпилированные издания Systema Naturae разработали и популяризировали систему наименования растений и животных в современной биологии. Рейд предполагает, что «Линнея можно рассматривать как создателя систематических и экологических исследований исследований», благодаря тому, что он назвал и классифицировал тысячи видов растений и животных. Линней также повлиял на основы дарвиновской эволюции, он считал, что происходило изменение между разными видами в пределах фиксированных родов. Линней был также одним из естествиспытателей, поместивших людей в одну категорию с приматами.

Ботаническая география и Александр фон Гумбольдт

На протяжении XVIII и начала XIX веков великие морские державы, такие как Великобритания, Испания и Португалия, запустили множество мировых исследовательских экспедиций, чтобы развиваться вместе с другими странами и открывать новые природные ресурсы, а также каталогизировать их новые природные ресурсы. В начале XVIII века было известно около двадцати тысяч видов растений против сорока тысяч в начале XIX века и примерно 300000 сегодня.

К этой экспедиции присоединились многие ученые, в том числе ботаники, такие как немецкий исследователь Александр фон Гумбольдт. Гумбольдта часто считают отцом экологии. Он был первым, кто занялся изучением взаимосвязи между организмми и их окружающей средой. Он выявил описил связь между наблюдаемыми видами растений и климатом и зоны растительности, используя широту и высоту, дисциплину, теперь известную как геоботаника. Фон Гумбольдта сопровождал в своей экспедиции ботаник Эме Бонпланд.

. В 1856 году на экспериментальной станции Ротамстеда был установлен Эксперимент на парковой траве, чтобы проверить действие удобрений. и удобрения на сенокосах. Это самый продолжительный полевой эксперимент в мире.

Понятие биоценоза: Уоллес и Мёбиус

Альфред Рассел Уоллес, современник и коллега Дарвина, был первым, кто использовал «географию» видов животных. В то время как несколько авторов признали, что они являются независимыми друг от друга видами растений, видов животных, а также другими видами животных, существующими или биоценозом. Первое использование этого термина обычно приписывается Карлу Мёбиусу в 1877 году, но уже в 1825 году французский натуралист Адольф Дюро де ла Маль использовал термин societé для обозначения совокупности растений. разных видов.

Потепление и основа экологии как дисциплины

В то время как Дарвин сосредоточился исключительно на конкуренции как силе отбора, Юджин Уорминг разработал новую дисциплину, которая рассматривает абиотические факторы, такие как засуха, соль, холод и т. д., столь же серьезно, как и биотические факторы в сборе биотических сообществ. Биогеография до потепления носила в основном описательный характер — фаунистический или флористический. Целью Уорминга было через изучение морфологии организмов (растений) и анатомии, то есть адаптации, объяснить, почему вид существует в определенных условиях окружающей среды. Более, цель новой дисциплины заключалась в том, чтобы объяснить, почему, населяющие похожие среды среды обитания, испытывая аналогичные опасности, решали бы те виды одинаковыми методами, несмотря на то, что часто имели разное филогенетическое происхождение. На основании его личных наблюдений в бразильском cerrado, в Дании, норвежском Финнмарке и Гренландии, Варминг прочитал первый университетский курс экологической географии растений. На основе своих лекций он написал книгу «Plantesamfund», которая была переведена на немецкий, польский и русский, а на английский как ». Экология растений ». Благодаря своему немецкому изданию книга оказала огромное влияние на британских и североамериканских ученых, таких как Артур Тэнсли, Генри Чендлер Коулз и Фредерик Клементс.

Мальтузианское влияние

Томас Роберт Мальтус был влиятельным писателем, писавшим о численности населения и его ограничениях в начале 19 века. Его работы сыграли роль в формировании того, как Дарвин видел мир, как работает. Мальтус писал:

Что рост населения обязательно ограничивается средствами существования,

Это население неизменно увеличивается, когда увеличиваются средства существования,

что высшая сила из-за нищеты и порока население подавляется, а фактическое население остается равным средствам к существованию.

В Эссе о принципах народонаселения Мальтус приводит доводы в пользу сдерживания роста населения через 2 года. Проверки: Положительные и Превентивные проверки. Первое повышает смертность, второе снижает рождаемость. Мальтус также выдвигает идею о том, что численность мирового населения выйдет за пределы допустимого количества людей. Эта форма мысли до сих пор продолжает влиять на дебаты по поводу рождаемости и количества браков в этой теории, выдвинутой Мальтусом. Эссе оказало большое влияние на Чарльза Дарвина и помогло ему создание теорию естественного отбора. Эта борьба, предложенная мальтузианской мыслью, не только повлияла на экологическую работу Чарльза Дарвина, но и помогла создать экономическую теорию мировой экологии.

Дарвинизм и наука об экологии

Джулия Маргарет Кэмерон ‘Портрет Дарвина

Считается, что корни научной экологии восходят к Дарвину. Это утверждение может показаться убедительным на первый взгляд, поскольку в «Происхождении видов» обнаружение наблюдений и предложенных механизмов, которые четко укладываются в рамки современной экологии (например, цепочка от кошки к клеверу — экологический каскад) году убеенным сторонником дарвинизма Эрнстом Геккелем. Дарвин никогда не использовал это слово в своих работах после года, даже в своих самых «экологических» произведениях, таких как предисловие к английскому изданию «Оплодотворения цветов» Германа Мюллера (1883) или в его собственном трактате о дождевых червях и образовании мулов в лесных почвах (Образование плесени овощей под действием червей, 1881). Более того, пионеры, основавшие экологию как научную дисциплину, такие как Юджин Уорминг, А. Ф. В. Шимпер, Гастон Бонье, Ф.А. Forel, S.A. Форбс и Карл Мёбиус почти не названы на идеи Дарвина в своих работах. Это было явно не из-за незнания или потому, что работы Дарвина не получили широкого распространения. Некоторые, такие как С.А. Форбс, изучающие сложные пищевые сети, задаваемые вопросы, которые еще не были даны ответы, о нестабильности пищевых цепочек, которая могла бы сохраниться, если бы доминирующие конкуренты не были адаптированы к самоограничениям. Другие вначале сосредоточились на доминирующих темах, связанных между морфологией и физиологией организма, с одной стороны, и окружающей средой, с другой, в основном абиотической средой, отсюда и экологического отбора. Концепция естественного отбора Дарвина, с другой стороны, была сосредоточена в первую очередь на конкуренцию. Механизмы, отличные от конкуренции, которые он описал, в первую очередь, расхождение характеров, которые могут уменьшить конкуренцию, и его утверждение, что «борьба», как он ее использовал, было метафорическим и таким образом, включало экологический отбор, в Origin уделялось меньше внимания, чем конкуренции. Несмотря на то, что в большинстве случаев Дарвин изображал его как неагрессивного отшельника, который позволяет другим сражаться в своих битвах, Дарвин всю жизнь оставался человеком, почти одержимым идеями соревнования, борьбы и завоевания — со всеми формами человеческого контакта как противостояния.

Хотя в деталях, представленных в предыдущем абзаце, нет ничего неправильного, не следует игнорировать тот факт, что дарвинизм использует сугубо экологический взгляд на адаптацию, а использование и определение термина Геккель пропитали дарвинизмом. По словам эколога и историка Роберта П. Макинтоша, «отношение экологии к дарвиновской эволюции явно прослеживается в названии работы, в которой впервые появилась экология». Более подробное определение, данное Геккелем в 1870 году, переведено на фронтисписе влиятельного текста по экологии, известной как «Великие обезьяны», как «… экология — это исследование всех тех сложных взаимосвязей, которые Дарвин назвал условиями борьбы за существование». Вопросы, поднятые в предыдущем абзаце, более подробно освещены в разделе «Раннее начало» под разделом «История» на странице Википедии по экологии.

Начало ХХ века ~ Развитие экологической мысли

Биосфера — Эдуард Зюсс и Владимир Вернадский

К XIX веку экология расцвела благодаря новому открытиюм в химии Лавуазье и де Соссюр, в частности, азотный цикл. Наблюдая за тем, что жизнь развивалась только в строгих пределах каждого отсека, составляющего атмосферу, гидросферу и литосферу, австрийский геолог Эдуард Зюсс термин биосфера в 1875 году. Suess использует название биосфера для условий, способствующих развитию жизни, таких как те, которые встречаются на Земле, которые включают флору, фауна, минералы <126.>, циклы материи и так далее.

В 1920-е годы Владимир Иванович Вернадский, русский геолог, перебравшийся во Францию, подробно изложил идею биосферы в своей работе «Биосфера» (1926) и описал фундаментальные принципы биогеохимических циклов. Таким образом, он переопределил биосферу как сумму всех экосистем.

Первые сообщения об экологическом ущербе были нанесены в 18 веке, так как размножение колоний привело к обезлесению. Начиная с 19 века, с промышленной революцией, росло все больше и больше насущных опасений по поводу воздействия на новую среду. Термин эколог используется с конца 19 века.

Экосистема: Артур Тэнсли

В 19 веке ботаническая география и зоогеография вместе составили основу биогеографии. Эта наука, изучающая среда обитания видов, пытается объяснить наличие определенных видов в данном месте.

В 1935 году Артур Тэнсли, британский эколог, ввел в употребление термин экосистема, интерактивная система, созданная между биоценоз (группа живых) и их биотоп, среда, в которой они живут. Таким образом, экология стала наукой об экосистемах.

<167 Концепция экосистемы Тэнсли была принята энергичным и влиятельным преподавателем биологии Юджином Одумом. Вместе со своим братом Ховардом Т. Одумом Юджин П. Одум написал учебник, по которому (начиная с 1953 года) обучено не одно поколение биологов и экологов Северной Америки.

Экологическая преемственность — Генри Чендлер Коулз

Дюны Индианы на озере Мичиган, на которые Коулз указал при разработке своих теорий экологической преемственности.

На рубеже 20-го века, Генри Чендлер Коулз был одним из основателей развивающегося исследования «динамической экологии», проводя свое исследование экологической последовательности в дюнах Индианы, песчаных дюнах на южной окраине. из озера Мичиган. Здесь Коулз обнаружил свидетельства экологической сукцессии в растительности и почве в зависимости от возраста. Коулс хорошо корни этой концепции и своих (первоначальных) предшественников. Таким образом, он приписывает первое использование этого слова французскому натуралисту Адольфу Дюро де ла Маль, который описал развитие растительности после вырубки леса, первое комплексное исследование сукцессионных процессов — Финский ботаник Рагнар Халт (1881 г.).

Экология животных — Экология животных — Элтон

Английский зоолог и эколог 20 века, Чарльз Элтон, обычно считается «отцом экологии животных». Элтон находился под влиянием Сообщества животных Виктора Шелфорда в умеренной Америке, начал свои исследования по экологии животных в качестве помощника своего коллеги Джулиана Хаксли в экологическом исследовании фауны Шпицбергена в 1921 году. Самые известные исследования Элтона проводились в то время, когда он был биологом. консультант компании Гудзонова залива, чтобы помочь понять колебания в урожае пушнины компании. Элтон изучал колебания численности и динамику популяции зайца-снегоступа, канадской рыси и других млекопитающих региона. Элтон также считается первым, кто ввел термины, пищевая цепь и пищевой цикл в свою знаменитую книгу «Экология животных». Элтону также приписывают участие в таких дисциплинах, как экология вторжений, экология сообществ и экология болезней диких животных.

G. Эвелин Хатчинсон — отец современной экологии

Джордж «Джи» Эвелин Хатчинсон была экологом 20-го века, которого обычно называют «отцом современной экологии». Хатчинсон имеет английское происхождение, но большую часть профессиональной карьеры провел, обучаясь в Нью-Хейвене, штат Коннектикут, в Йельском университете. На протяжении своей карьеры, более шести десятилетий, Хатчинсон внес вклад в такие науки, как лимнология, энтомология, генетика, биогеохимия, математическая теория динамики популяции и многие другие. Хатчинсон также считается первым, кто связал науку с теорией в рамках дисциплины экологии. Хатчинсон был также одним из первых, кому приписали сочетание экологии с математикой. Другим важным вкладом Хатчинсона была его разработка текущего определения «ниши» организма — поскольку он признавал роль организма в своем сообществе. Наконец, наряду с его огромным влиянием в области экологии на протяжении всей своей профессиональной деятельности, Хатчинсон также оказал долгосрочное влияние на экологию благодаря своим многочисленным ученикам, которых он вдохновлял. Самыми выдающимися среди них были Роберт Х. Макартур, получивший докторскую степень под руководством Хатчинсона, и Раймонд Л. Линдеманн, который защитил свою докторскую диссертацию во время стипендии под его руководством. Макартур стал лидером теоретической экологии и вместе с Э. О. Уилсоном разработал теорию биографии острова. Раймонд Линдеманн сыграл важную роль в развитии современной науки об экосистемах.

Переход 20 века к современной экологии

«Что такое экология?» Этот вопрос задавали почти каждое десятилетие 20 века. К сожалению, ответ чаще всего заключался в том, что это была в основном точка зрения, которая использовалась в других областях биологии, а также «мягкая», как, например, социология, а не «жесткая», как физика. Хотя аутэкология (по сути, физиологическая экология) могла развиваться через типичный научный метод наблюдения и проверки гипотез, синекологию (изучение сообществ животных и растений) и генекологию (эволюционнуюэкологию), для экспериментов было столь же ограниченным, как и, скажем, для: геология, продолжалась почти тем же индуктивным сбором данных, что и исследования естественной истории. Чаще всего моделились, подходящие и исторические, используются для разработки теорий, обладающих объяснительной силой, но не реальных данных в поддержку. Теория Дарвина, поскольку она является источником современной биологии, является ярким примером.

Г. Э. Хатчинсон, названный выше «от современной экологии», благодаря своему влиянию повысил статус экологии до уровня строгой науки. Руководя работой Раймонда Линдеманна по трофико-динамической концепции экосистемы в процессе публикации после безвременной смерти Линдеманна, Хатчинсон заложил основу, что стало современной наукой об экосистемах. В своих двух знаменитых статьях конца 1950-х годов, «Заключительное слово» и «Посвящение Святой Розалии», как их теперь называют, Хатчинсон положил начало теоретической экологии, которое отстаивал Роберт МакАртур.

Экосистемная наука быстро и разумно стала ассоциироваться с «большой наукой» — и, очевидно, «твердой» наукой — атомных испытаний и ядерной энергии. Его предложили Стэнли Ауэрбах, который основал Отдел наук об окружающей среде в Окриджской национальной лаборатории, чтобы проследить пути радионульцидов в окружающей среде, а также братья Одум, Говард и Юджин, большая часть ранних работ которой была поддержана Атомной лабораторией. Энергетическая комиссия. Учебник Юджина Одума «Основы экологии» сегодня стал чем-то вроде библии. Когда в 1960-х годах Международная биологическая программа (МБП) приобрела экосистемный характер, экология, на основе лежала системная наука, навсегда вошла в сферу большой науки с проектами, имеющими большие размеры и большие бюджеты. Всего через два года после публикации «Тихой весны» в 1962 году экология экосистем была провозглашена как наука об окружающей среде в серии статей в специальном выпуске BioScience.

Теоретическая экология пошла другим путем, чтобы утвердить свою легитимность., особенно в восточных университетах и ​​некоторых кампусах Западного побережья. Это был путь Роберта Макартура, который использовал простую математику в своих «Трех влиятельных статьях», также опубликованных в конце 1950-х годов, по вопросам популяционной и общественной экологии. Хотя простые уравнения теоретической экологии в то время не подкреплялись данные, они все еще считались «эвристическими». Им сопротивлялся ряд исследований экологов, чьи жалобы на интеллектуальную цензуру, исследования, которые не вписывались в гипотетико-дедуктивную устойчивость новой экологии, можно было использовать высок как свидетельство того, насколько подход Хатчинсона-Макартура.

Безвременная смерть Макартура в 1972 году была примерно в то время, когда постмодернизм и «научные войны» пришли в экологию. Имена Куна, Витштейгенна, Поппера, Лакатоса и Фейербренда стали предметом споров в экологической литературе. Теорию адаптации Дарвина посредством естественного отбора обвиняли в тавтологии. Были подняты вопросы о том, являются ли экосистемы кибернетическими и имеют ли теорию экосистемы какое-либо применение в окружающей среде средой. Наиболее оскорбительными были дебаты, возникшие по поводу экологии в стиле Макартура.

Ситуация достигла апогея после симпозиума, организованного последователями Макартура в его честь, и второго симпозиума, организованного так называемой «мафией Таллахасси» в Вакулла-Спрингс во Флориде. В томе почтения, опубликованном в 1975 году, была обширная глава, написанная в то время преподавал физиологию почек в Медицинской школе Калифорнийского университета в Лос-Анджелесе, в которой представлен ряд «правил собрания», объясняющих особенности видов птиц, обитающих. на острове архипелагов, таких как знаменитые зяблики Дарвина на Галапагосских островах. Конференция в Вакулле была организована группа инакомыслящих во главе с Дэниелом Симберлоффом и Дональдом Стронгом-младшим, Дэвид Кваммен описал в своей книге как утверждающих, что эти модели могут быть не более чем лицами, которые мы видим на Луне, в облаках, чернильные пятна Роршаха ». Их точка заключалась в том, что работы Даймонда (и других авторов) не подпадали под критерий опровержимости, установленный для философом Карлом Поппером. Обозреватель обмена мнениями между лагерями в выпуске Синтез обнаружил, что на ум приходят «образы рукопашного боя или драки в баре». Группа штата Калифорния представила свои методы «нулевых» моделей. Это было резко осуждено Даймондом и Мишелем Гилпином в сборке симпозиума и Джонатаном Рофгарденом в «Американском натуралисте».

Параллельно возникла полемика, добавившая тепла вышесказанному, которая стала известна в кругах сохранения как SLOSS (Single Large или Несколько Небольшие запасы). Даймонд также, чтобы в соответствии с теорией географии островов, разработанной МакАртуром и Э. О. Уилсоном, заповедники должны быть как можно более крупными и сохраняться как единое целое. В интерпретации Даймонда теории Макартура и Вильсона даже прокладка дороги через природную территорию приведет к потере видов из-за меньшей площади оставшихся частей. Тем временем Симберлофф, который в своем отмеченном наградами экспериментальном исследовании под руководством Е.О. Уилсона отключил мангровые острова у побережья Флориды и проверил соответствие кривой вид-площади, полученной теории островной биогеографии, вернувшейся фауне, собраны данные, которые показали вполне противодействие: множество мелких фрагментов вместе иногда содержат больше видов, чем исходное целое. Это вызвало значительную брань на страницах журнала Science.

В конце концов, в нескольких куновской манере, аргументы, вероятно, будут окончательно разрешены (или нет) ухода путем участников. Однако экология продолжает развиваться как строгая и даже экспериментальная наука. Нулевые модели, по общему признанию, трудно усовершенствовать, использовать, и, хотя ведущий ученый-эколог недавно назвал теорию островной биогеографии «одной из самых элегантных и важных теорий современной экологии, превосходящей тысячи меньших идей и концепций», тем не менее он находит, что «кривая вид-площадь — грубый инструмент во многих контекстах» и «теперь упрощенным до карикатурного».

Хронология экологов

Список основателей, новаторов и их значимых вкладов в экологию, начиная с романтизма и далее.

Примечательная фигура Продолжительность жизни Основной вклад и цитирование
Антони ван Левенгук 1632–1723 Первый, кто разработал концепцию пищевых цепочек
Карл Линней 1707–1778 Влиятельный натуралист, изобретатель науки об экономике природы
Александр Гумбольдт 1769–1859 Впервые описал экологический градиент биоразнообразия в широтах рост к тропикам в 1807 г.
Чарльз Дарвин 1809–1882 Основатель гипотезы эволюции посредством естественного отбора, основоположник экологических исследований почв
Элизабет Кэтрин Томас Карн 1817-1873 гг. Геолог, минералог и философ, наблюдавший за сельским пространством и культурным пространством, обнаружив, что сельская жизнь является лучшим средством борьбы с удушающим классовым разделением.
Герберт Спенсер 1820–1903 Один из первых основателей социальной экологии Придумал фразу «выживание сильнейших»
Карл Мёбиус 1825–1908 Первым, кто разработал концепцию экологического сообщества, биоценоза или живого сообщества
Эрнст Геккель 1834–1919 Изобрел термин экология, популяризировал исследовательские связи между экологией и эволюцией
Виктор Хенсен 1835–1924 Изобрел термин «планктон», разработал количественные и статистические показатели продуктивности морей
Евгений Уорминг 1841–1924 Ранний основатель Ecological Plant Geography
Эллен Суоллоу Ричардс 1842–1911 Пионер и педагог, связавший городскую экологию со здоровым человека
Стивен Форбс 1844–1930 Ранний основоположник энтомологии и экологических концепций в 1887 г.
Вито Вольтерра 1860–1940 Независимо разработал математические модели популяций примерно в то же время, что и Альфред Дж. Лотка.
Владимир Вернадский 1869–1939 Основал концепцию биосферы
Генри К. Коулз 1869–1939 Новаторские исследования и концептуальные разработки в исследовании экологического благополучия
Ян Кристиан Смэтс 1870–1950 Создал термин холизм в книге «Холизм и эволюция» »1926 года.
Артур Дж. Тэнсли 1871–1955 Первый, кто ввел термин «экосистема» в 1936 г., известный исследователь
Чарльз Кристофер Адамс 1873–1955 Эколог животных, биогеограф, автор первой американской книги по экологии животных в 1913 г., основал экологическую энергетику
Фридрих Ратцель 1844–1904 Немецкий географ, который впервые ввел термин биогеография в 1891 г.
Фредерик Клементс 1874–1945 Автор первой влиятельной американской книги по экологии в 1905 г.
Виктор Эрнест Шелфорд 1877–1968 Основал физиологическую экологию, первый разработал концепции пищевой сети и биома, основал The Nature Conservancy
Альфред. Лотка 1880–1949 Первые математические модели популяций, объясняющие трофические исследования (хищник-жертва) с помощью логистического уравнения
Генри Глисон 1882–1975 Пионер в области экологии, количественный анализ теоретик-теоретик, автор и основатель индивидуалистической концепции экологии
Чарльз С. 1900–1991 «Отец» экологии животных, пионер пищевой сети и ниши и влиятельных животных Текст по экологии
Г. Эвелин Хатчинсон 1903–1991 Лимнолог и концептуально продвинул концепцию ниши
Юджин П. Одум 1913–2002 Соучредитель экосистемной экологии и экологических термодинамических концепций
Ховард Т. Одум 1924–2002 Соучредитель экосистемной экологии и экологических термодинамических концепций
Роберт МакАртур 1930–1972 Соучредитель на Теории островной биогеографии и новатор методов экологической статистики

Экологическое влияние на социальные и гуманитарные науки

Экология человека

Экология человека началась в 1920-х годах с изучением изменений в сукцессии растительности в городе Чикаго. Это стало отдельной областью исследований в 1970-х годах. Это стало первым признанием того, что люди, колонизировавшие все континенты Земли, были основным экологическим фактором. Люди значительно изменяют окружающую среду за счет развития среды обитания (в частности, городское планирование ), интенсивной эксплуатации, такой как лесозаготовка и рыболовство, а также в качестве побочных эффектов сельского хозяйства, горнодобывающей промышленности и промышленности. Помимо экологии и биологии, в эту дисциплину входили многие другие естественные и социальные науки, такие как антропология и этнология, экономика, демография, архитектура и городское планирование, медицина и психология и многие другие. Развитие экологии человека привело к возрастанию роли экологической науки в проектировании и управлении городами.

В последние годы экология человека была темой, которая интересовала исследователей в организациях. Ханнан и Фриман («Популяционная экология организаций» (1977), Американский журнал социологии) утверждают, что организации не только адаптируются к окружающей среде. Вместо этого это также среда, которая отбирает или отвергает группы организаций. В любой данной среде (в равновесии ) будет только одна форма организации (изоморфизм ). Организационная экология была выдающейся теорией в учете разнообразия организаций и их меняющегося состава с течением времени.

Джеймс Лавлок и гипотеза Гайи

Теория Гайи, предложенная Джеймсом Лавлоком в его работе «Гайя: новый взгляд на жизнь» на Земля, выдвинула точку зрения, согласно которой Землю следует рассматривать как единый живой макроорганизм. В частности, он утверждал, что ансамбль живых организмов совместно развил способность управлять глобальной окружающей средой, влияя на основные физические параметры, такие как состав атмосферы, скорость испарения, химический состав почв и океанов, чтобы поддерживать условия благоприятен для жизни. Эту идею поддержала Линн Маргулис, которая расширила свою эндосимбиотическую теорию, предполагающую, что клеточные органеллы произошли от свободноживущих организмов, до идеи, что отдельные организмы многих видов могут рассматриваться как симбионты внутри более крупный метафорический «сверхорганизм».

Это видение было в значительной степени знаком времени, в частности, растущим после Второй мировой войны осознанием того, что деятельность человека, такая как ядерная энергия, индустриализация, загрязнение и чрезмерная эксплуатация природных ресурсов, подпитываемая, угрожала вызвать катастрофы на планетарном уровне. масштаб, и с тех пор повлиял на многих в экологическом движении.

История и взаимосвязь между экологией и охраной окружающей среды и экологическими движениями

Экологи и другие экологи использовали экологию и другие науки (например, климатологию ) для поддерживают их правозащитные позиции. Взгляды защитников окружающей среды часто противоречивы по политическим или экономическим причинам. В результате некоторые научные работы в области экологии напрямую влияют на политику и политические дебаты; они, в свою очередь, часто прямые экологические исследования.

Однако историю экологии не следует смешивать с историей экологической мысли. Экология как современная наука прослеживается только в публикации Дарвина Происхождение видов и последующем названии Геккелем науки, необходимой для изучения теории Дарвина. Осведомленность о влиянии человечества на окружающую среду восходит к Гилберту Уайту в Селборне 18-го века, Англия. Осведомленность о природе и ее взаимодействиях можно проследить еще дальше во времени. Однако экология до Дарвина медицина до открытия Пастером заразной природы болезней. История есть, но она актуальна лишь отчасти.

Ни Дарвин, ни Геккель, правда, не самопровозглашенных экологических исследований. То же самое можно сказать и об исследователях в некоторых областях, которые внесли свой вклад в экологическую мысль до 1940-х годов, но при этом не были экологами. Показательный пример — исследования населения Раймонда Перла. Экология в исследованиях методов эволюции в конце 19-го и начала 20-го веков. До тех пор, пока исследования Менделя с горохом не были заново открыты и включен в современный синтез, дарвинизм пострадал от доверия. Многие ранние экологи придерживались ламаркистской точки зрения наследования, как и Дарвин, время от времени. Тем не менее, экологические исследования животных и животных, других живых и полевых, продолжались быстро.

Сохранение и экологические движения — 20 век

Когда Экологическое общество Америки (ESA) было зарегистрирован в 1915 году, он уже имел перспективу сохранения. Виктор Э. Шелфорд, которые были объектами исследования экологов, были угрозой деградации из-за вмешательства в качестве угрозы деградации из-за использования ресурсов для одних из своих целей сохранения территорий. Экология человека также была заметной частью ЕКА с самого начала, о чем свидетельствуют такие публикации, как: «Контроль над пневмонией и гриппом с помощью погоды», «Обзор отношений с человечеством», «Экологические отношения». полярных эскимосов »и« Городская уличная пыль и инфекционные болезни »на первых страницах экологических и экологических монографий. Второй президент ЕКА, Эллсуорт Хантингтон, был экологом-человеком. Стивен Форбс, еще один ранний президент, в 1921 году призвал к «гуманизации» экологии, поскольку человек явно доминирующим видом на Земле.

Это благоприятное начало на самом деле было первым из серии порывов и возвратов, произошедших со стороны новая наука в отношении. Человеческая экология обязательно сосредоточена на антропогенных средах и их практических проблемах. Однако экологи в целом пытались сделать экологию фундаментальной наукой, обладающим достаточным авторитетом, чтобы проникнуть на факультеты Лиги плюща. Считается, что нарушенная среда не раскрывает секреты природы.

Интерес к окружающей среде, созданный Американской пыльной чашей, в 1935 году вызвал шквал призывов к экологии, обратить внимание на практические вопросы среды. Эколог-новатор К. К. Адамс хотел вернуть в науку экологию человека. Фредерик Э. Клементс, ведущий эколог того времени, рассмотрел проблемы землепользования, приведшие к возникновению «пыльной чаши», с точки зрения своих идей о ведении и кульминации чаши растений. Пол Сирс своей книгой «Пустыни» достиг широкой аудитории на марше. Возможно, Вторая мировая война заставила отказаться от этого вопроса.

Напряжение между чистой экологией, стремящейся понять и прикладной экологией, стремящейся описать и исправить, достигло апогея после Второй мировой войны. Адамс снова попытался подтолкнуть ESA к прикладным областям, заставив его собрать пожертвования на продвижение экологии. Он предсказал, что «большое расширение экологии» неизбежно «из-за ее тенденции к интеграции». Однако экологи были чувствительны к мнению, что экология все не считается строгой количественной наукой. Тем, кто настаивал на прикладных исследованиях и активном участии в охране природы, снова был скрытно отпор. Экология человека стала частью социологии. Именно социолог Льюис Мамфорд представил идеи Джорджа Перкинса Марша современному вниманию на конференции 1955 года «Роль человека в изменении лица Земли». В этом престижном конклаве доминировали социологи. В немию обвинили в «испытаниях экспериментальных методов» и пренебрежении «человеком как экологическим агентом». Один участник назвал экологию «архаичной и бесплодной». В рамках ЕКА разочарованного Шелфорд основал Союз экологов, когда его Комитет по природным условиям прекратил работу из-за позиции ЕКА по охране природы. В 1950 году молодая организация была переименована и преобразована в Nature Conservancy — название, заимствованное для той же цели у британского правительственного агентства.

Однако два события вернули курс экологии к прикладным задачам. Одним из них был Манхэттенский проект. После войны она стала Комиссией по атомной энергии. Сейчас это Министерство энергетики (DOE). Его обширный бюджет включал исследования и последствия производства ядерного оружия. Это привело к экологии и превратило это в «большую науку». Экосистемная наука, как фундаментальная, так и прикладная, начала конкурировать с теоретической экологией (тогда называемой эволюционной экологией, а также математической экологией). Юджин Одум, опубликованный в 1953 году очень популярный учебник по экологии, стал защитником экосистемы. В своих публикациях Одум призывал экологических исследований в области экологического и прикладного развития.

Вторым событием была публикация Тихая весна. Книга Рэйчел Карсон представила экологию как слово и концепцию. Ее влияние было мгновенным. Исследовательский комитет, подстрекаемый публикацией книги, сообщил ЕКА, что их наука не готова взять на себя возложенную на нее ответственность.

Концепция экологии Карсона очень похожа на концепцию Джина Одума. В результате науки об экосистемах доминировала в международной биологической программе 1960-х и 1970-х годов, что принесло экологии деньги и престиж. Тихая весна также послужила толчком для программ защиты окружающей среды, которые были начаты администрациями Кеннеди и Джонсона и вступили в силу незадолго до первого дня Земли. Вклад экологов приветствовался. Бывший президент ESA Стэнли Кейн, например, был назначен помощником секретаря в внутреннем делопроизводстве.

Требование экологической оценки Закона о национальной экологической политике 1969 года (NEPA), «узаконенная экология», по словам одного юриста-эколога. Президент ЕКА назвал это «Великой экологической хартией вольностей». Известный канадский эколог назвал это «бесполезным занятием». НЕПА и аналогичные статуты, по крайней мере, обеспечили много работы экологам. Вот в чем проблема. К этой задаче не были готовы ни экологи, ни экологи. Недостаточно экологов было для работы над оценкой воздействия за пределами лабораторий Министерства энергетики, что привело к появлению «мгновенных экологов», имеющих сомнительные полномочия. Начали возникать призывы к профессионализации экологии. Ученый-индивидуалист Франк Эглер, в частности, посвятил эту задаче свою острую прозу. И снова возник раскол между учеными-фундаментальными и прикладными учеными в ЕКА, на этот раз усугубленный вопросом защиты окружающей среды. Противоречие, история которого еще не получила должного рассмотрения, длилось в 1970-х и 1980-х годах, закончившись процессом добровольной сертификации со стороны ЕКА вместе с лоббистской рукой в ​​Вашингтоне.

День после Земли, помимо вопросов защиты и профессионализма, экология также должна заниматься вопросами, связанными с ее принципами. Многие теоретические принципы и методы как об исследованиях окружающей среды, так и эволюции экологии стали мало цениционной теории и оценке окружающей среды. Экологи вообще давлением начали подвергать сомнению методы и логику своей науки под своей новой дурной славы. Между тем, сотрудники государственных органов и групп защиты окружающей среды обвинили в религиозном применении сомнительных принципов в своей природоохранной деятельности. Управление находящимися под угрозой исчезновения популяций пятнистой совы вылилось в противоречие.

Сохранение окружающей среды для экологов создало проблемы, аналогичные тем, которые ядерная энергия дала бывшим ученым Манхэттенского проекта. В каждом случае приходилось согласовывать с индивидуальной политикой, религиозными убеждениями и мировоззрениями, что было трудным процессом. Некоторым экологам удалось отделить свою науку от своей пропаганды; другие без сожаления стали признанными защитниками окружающей среды.

Рузвельт и американская охрана

Теодор Рузвельт интересовался природой с юных лет. Он внес свою политическую страсть в свою политическую политику. Рузвельт считал необходимо сохранить ресурсы нации и ее среду. В 1902 году он создал федеральную мелиоративную службу, которая мелиорировала земли для сельского хозяйства. Он также создал Бюро лесного хозяйства. Эта организация, управляемая Гиффордом Пинчотом, создана для управления и обслуживания лесных угодий нации. Рузвельт подписал Акт о сохранении американских древностей в 1906 году. Этот акт позволил ему объявить публичным провозглашением исторические достопримечательности, исторические и доисторические сооружения и другие объекты исторического и научного интереса, которые расположены на землях, принадлежащих или контролируемых. Правительство США должно быть национальными памятниками. «В соответствии с этим законом он создал до 18 национальных памятников. Во время своего президентства Рузвельт основал 51 федеральный орнитологический заповедник, 4 национальных, 150 национальных лесов и 5 национальных парков. В целом он защитил более 200 миллионов акров земли.

Экология и глобальная политика

Экология центральной мировой политики еще в 1971 году ЮНЕСКО начало исследования программа под Название Человек и Биосфера с целью повышения уровня знаний о взаимодействии между людьми и природой. Несколько лет спустя он определил концепцию биосферного заповедника.

. первую международную конференцию по окружающей среде человека среде в Стокгольме, подготовленный Рене Дубос и другими экспертами. 126>». иями в экологии стали разработки концепции биосферы и появление в 1980-х годах терминов «биологическое разнообразие» — или сейчас чаще биоразнообразие. Эти термины были разработаны во время Встречи на высшем уровне в Рио-де-Жанейро в 1992 году, где концепция биосферы была признана крупными организациями, а риски, связанные с сокращением биоразнообразия, были публично признаны признал.

Затем, в 1997 году, опасность, с которой сталкивается биосфера, были признаны во всем мире на конференции, ведущей к Киотскому протоколу. В частности, эта конференция подчеркнула возрастающую опасность парникового эффекта, связанного с воздействием парниковых газов в атмосфере, что приводит к глобальным изменениям климата. В Киото большинством стран мира признали взгляда на экологию с глобальной точки зрения, в мировом масштабе, и для учета воздействия человека на среду Земли.

См. Также

  • Гумбольдтовская наука

Ссылки

Дополнительная литература

Понравилась статья? Поделить с друзьями:
  • Eaten a real word
  • Eat your word meaning
  • Eat word family words
  • Eat the meat of the word
  • Eat one word meaning