Двойной интеграл в excel

Давайте разберёмся, как вычислить определённый интеграл таблично заданной функции с помощью программы Excel из состава Microsoft Office.

1Постановка физической задачина расчёт определённого интеграла

Допустим, у нас есть таблично заданная некоторая величина. Для примера пусть это будет накопленная доза радиации при авиаперелёте. Скажем, был такой эксперимент: человек с дозиметром летел на самолёте из пункта А в пункт Б и периодически измерял дозиметром мощность дозы (единицы измерений – микрозиверт в час, мкЗв/ч). Возможно, Вас это удивит, но при обычном перелёте на самолёте человек попадает под радиоактивное излучение, превышающее фоновый уровень до 10 раз и даже больше. Но воздействие это кратковременное, и поэтому не столь опасное. По результатам измерений у нас есть таблица вот такого формата: Время – Мощность дозы.

Таблично заданная величина для расчёта определённого интеграла

Таблично заданная величина для расчёта определённого интеграла

Необходимо посчитать суммарную накопленную за время полёта дозу.

2Геометрический смыслопределённого интеграла

Как мы помним из курса школьной алгебры, определённый интеграл – это площадь под графиком измеряемой величины. Чтобы определить накопленную дозу радиации в рассматриваемом примере, нужно определить площадь фигуры под графиком таблично заданной мощности дозы. Накопленная доза радиации равна площади фигуры под графиком мощности дозы

График изменения мощности дозы во время полёта

График изменения мощности дозы во время полёта

3Методика вычисленияопределённого интеграла

Вычислять интеграл мы будем самым простым, но довольно точным методом – методом трапеций. Напомню, площадь фигуры под графиком любой кривой можно разделить на прямоугольные трапеции. Сумма площадей этих трапеций и будет искомым значением определённого интеграла.

Площадь трапеции определяется как полусумма оснований, умноженная на высоту: Sтрап = (A + B) / 2 × h Основания в нашем случае – это табличные измеренные значения мощности дозы за 2 последовательных промежутка времени, а высота – это разница времени между двумя измерениями.

Метод трапеций для вычисления значения определённого интеграла

Метод трапеций для вычисления значения определённого интеграла

4Согласованиеединиц измерения

В нашем примере измерения мощности дозы радиации даётся в мкЗв/час, а шкала времени – с точностью до минут. Мы не можем брать интеграл по времени, измеряемому в минутах, для величины, измеряемой в часах. Поэтому необходимо перевести мкЗв/час в мкЗв/мин.

Для перевода просто разделим мощность дозы в мкЗв/час построчно на количество минут в часе, т.е. на 60. Добавим ещё один столбец в нашу таблицу. На иллюстрации это столбец «D». В столбце «D» в строке 2 вписываем =С2/60 А потом с помощью маркера заполнения распространяем эту формулу на все остальные ячейки в столбце «D», (т.е. тянем мышью чёрный прямоугольник в правом нижнем углу ячейки). Таким образом, в столбце «D» у нас появятся значения мощности дозы радиации, измеряемые в микрозивертах в минуту для каждой минуты перелёта.

Согласуем единицы измерения по шкале времени и шкале мощности дозы

Согласуем единицы измерения по шкале времени и шкале мощности дозы

5Вычисление площадей отдельных трапеций

Теперь нужно найти площади трапеций за каждый промежуток времени. В столбце «E» будем вычислять по приведённой выше формуле площади трапеций.
Полусумма оснований – это половина суммы двух последовательных мощностей дозы из столбца «D». Так как данные идут с периодом 1 раз в минуту, а мы берём интеграл по времени, выраженному в минутах, то высота каждой трапеции будет равна единице (разница времени между каждыми двумя последовательными измерениями, например, 17ч31мин — 17ч30мин = 0ч1мин = 1мин).

Получаем формулу в ячейке «E3»: =1/2*(D3+D2)*1. Понятно, что «×1» в этой формуле можно не писать. И аналогично, с помощью маркера заполнения, распространяем формулу на весь столбец. Теперь в каждой ячейке столбца «Е» посчитана накопленная доза за 1 минуту полёта.

Вычисление площадей прямоугольных трапеций за каждый промежуток времени

Вычисление площадей прямоугольных трапеций за каждый промежуток времени

Если бы данные шли не через 1 минуту, то нам нужно было бы написать формулу так:
=1/2*(D3+D2)*(МИНУТЫ(A3) – МИНУТЫ(A2)).

Правда при этом, если есть переход на следующий час, то получится отрицательное значение. Чтобы этого не произошло, впишем в формулу часы:
=1/2*(D3+D2)*(ЧАС(A3)*60+МИНУТЫ(A3)) – (ЧАС(A2)*60+МИНУТЫ(A2)).
Если переходим на следующие сутки, то нужно будет уже добавлять даты, и т.д.

5Определение площадипод графиком функции

Осталось найти сумму вычисленных площадей трапеций. Можно в ячейке «F2» написать формулу: =СУММ(E:E) Это и будет сумма всех значений в столбце «E», т.е. численное значение искомого определённого интеграла. Но давайте сделаем вот что: определим накопленную дозу в разные моменты полёта. Для этого в ячейку «F4» впишем формулу =СУММ(E$3:E4) и маркером заполнения распространим на весь столбец «F».

Обозначение E$3 говорит программе Excel, что увеличивать индекс ячейки «3» в столбце «E» при переносе формулы на следующие строки не нужно. Т.е. в строке 4 формула будет определять сумму в ячейках с «Е3» по «Е4», в строке 5 – сумму с «Е3» по «Е5», в строке 6 – с «Е3» по «Е6» и т.д.

Построим график по столбцам «F» и «A». Это график изменения накопленной дозы радиации во времени. Наглядно видно монотонное увеличение накопленной дозы радиации за время полёта. Это говорит о том, что мы правильно рассчитали интеграл. И окончательное значение накопленной за двухчасовой полёт дозы радиации, которое получается в последней ячейке этого столбца, равно примерно 4,5 микрозиверт.

Вычисление суммарной площади всех трапеций, что численно равно искомому определённому интегралу

Вычисление суммарной площади всех трапеций, что численно равно искомому определённому интегралу

Таким образом, мы только что нашли определённый интеграл таблично заданной функции в программе Excel на реальном физическом примере. В качестве приложения к статье – файл Excel с нашим примером.

Опубликовано 10 Авг 2015
Рубрика: Справочник Excel | 13 комментариев

Метод Симпсона.При стремлении постичь нечто сложное, громоздкое, непонятное следует «разбить» его на как можно большее количество простых, мелких, понятных частей, изучить их с помощью существующих инструментов, а затем «сложить» эти результаты и получить итоговый ответ.

Формулировка в предыдущем предложении определяет сущность понятия интегрирования.

Интеграл чего-либо – это сумма всех малых частей этого чего-либо. Чем больше количество этих малых частей, тем точнее значение интеграла соответствует действительности, определяя признак изучаемого объекта.

Интегрирование применимо для изучения свойств физических и философских объектов при условии, что эти свойства остаются неизменными как для «мелкой» части, так и для всего объекта в целом.

Функция – это описание зависимости некоторого признака или свойства объекта от аргумента.

Например:

Объект – плоская фигура между графиком функции и осью абсцисс.

Признак (значение функции) – высота фигуры.

Аргумент (независимая переменная) – ширина фигуры.

Функция – описание зависимости высоты от ширины.

Определенный интеграл функции – площадь фигуры. Площадь тоже является признаком фигуры, но зависит от двух переменных – высоты и ширины – и представляет собой качественно иной новый признак.

Теория.

Подробно рассмотрим два наиболее точных метода численного интегрирования функции одной переменной – метод трапеций и метод парабол или метод Симпсона. Есть еще метод прямоугольников, но мы его проигнорируем из-за невысокой точности.

Все, что требуется для понимания и применения метода трапеций и метода Симпсона на практике представлено далее на рисунке.

Методы численного интегрирования: метод трапеций и метод Симпсона.

Площадь под кривой = f (x) разбиваем на n-1 криволинейных трапеций, у которых три стороны – это прямые линии, а одна сторона – участок кривой y=f (x). Суммарная площадь под графиком функции на участке от x1 до xn – это и есть искомая величина, которая является определенным интегралом функции на этом участке и находится как сумма площадей всех криволинейных трапеций.

Точно вычислить аналитически площадь криволинейной трапеции бывает сложно или даже невозможно.

Для приближенного вычисления площади криволинейной трапеции можно заменить участок кривой прямой линией и, получив простую фигуру – обычную трапецию, найти по известной формуле ее площадь. В этом суть метода трапеций.

Если участок кривой линии над двумя криволинейными трапециями заменить параболой, проведенной через три характерные точки, то получим новую криволинейную трапецию с одной из сторон в виде параболы. Количество новых фигур будет в два раза меньше, чем количество исходных трапеций. Площадь этих новых фигур вычисляется по простой формуле. В этом смысл метода Симпсона.

Идею замены участка любой кривой участком параболы высказывал Исаак Ньютон, но первым вывел формулу английский математик Томас Симпсон. Метод Симпсона для вычисления интегралов является самым точным из приближенных численных методов.

Если вычисление интегралов методом трапеций не имеет ограничений, то для того, чтобы реализовать метод Симпсона необходимо выполнить два условия.

1. Разбить площадь на четное количество частей, то есть n должно быть нечетным числом!

2. Расстояния между точками по оси x должны быть одинаковыми!

Практика вычисления интегралов в Excel.

Определенной сложностью является связать вычисление интегралов с реальными задачами из жизни. Рассмотрение примеров – лучший способ устранения подобных препятствий.

Определение тепловой энергии.

Мой знакомый из города Улан-Удэ Алексей Пыкин проводит испытания  воздушных солнечных PCM-коллекторов производства КНР. Воздух из помещения подается вентилятором в коллекторы, нагревается от солнца и поступает назад в помещение. Каждую минуту измеряется и записывается температура воздуха на входе в коллекторы и на выходе при постоянном воздушном потоке. Требуется определить количество тепловой энергии полученной в течение суток.

Более подробно о преобразовании солнечной энергии в тепловую и электрическую и об экспериментах Алексея я постараюсь рассказать в отдельной статье. Многим, я думаю, это будет интересно.

Запускаем MS Excel и начинаем работу – выполняем вычисление интеграла.

Заполним таблицу.

1. В столбец B вписываем время проведения измерения τi.

2. В столбец C заносим температуры нагретого воздуха t2i, измеренные на выходе из коллекторов в градусах Цельсия.

3. В столбец D записываем температуры холодного воздуха t1i, поступающего на вход коллекторов.

Вычисление интегралов -1-24s

4. В столбце E вычисляем разности температур dti на выходе и входе

dti=t2it1i

5. Зная удельную теплоемкость воздуха c=1005 Дж/(кг*К) и его постоянный массовый расход (измеренная производительность вентилятора) G=0,02031 кг/с, определяем мощность установки Ni в КВт в каждый из моментов времени в столбце F

Ni=c*G*dti

На графике ниже показана экспериментальная кривая зависимости мощности, развиваемой коллекторами, от времени.

График тепловой мощности -24s

Количество тепловой энергии, выработанной за промежуток времени – это интеграл этой функции, и значение интеграла – это заштрихованная площадь под кривой.

6. Вычисляем в ячейках столбца G площади трапеций, суммируем их и находим общее количество энергии, выработанной за день

Qi=(Ni+1+Ni)*(τi+1τi)/2

QQi=10,395 КВт*час

7. Рассчитываем в ячейках столбца H элементарные площади по методу парабол, суммируем их и находим общее количество энергии по методу Симпсона

Qj=(Ni+4*Ni+1+Ni+2)*(τi+1τi)/3

QQj=10,395 КВт*час

Как видим, значения не отличаются друг от друга. Оба метода демонстрируют одинаковые результаты!

Исходная таблица содержит 421 строку. Давайте уменьшим её в 30 раз и оставим всего 15 строк, увеличив тем самым интервалы между замерами с 1 минуты до 30 минут.

Вычисление интегралов -2-24s

По методу трапеций: Q=10,220 КВт*час (-1,684%)

По методу Симпсона: Q=10,309 КВт*час (-0,827%)

Не смотря на оставшуюся неожиданно весьма высокую точность полученных результатов, метод трапеций дает в данном случае относительную ошибку в 2 раза большую, чем метод Симпсона.

Общие выводы.

Вычисление интегралов численными методами в Excel позволяет эффективно и быстро решать сложные практические задачи, обеспечивая очень высокую точность результатов.

Так как мы существуем в пространстве и времени, то и всё окружающее нас изменяется или в пространстве или во времени. Это означает, что аргументом x функций y интересующих нас процессов или объектов чаще всего являются длина или время. Например, пройденный путь – это интеграл функции скорости (аргумент – время), площадь плотины – это интеграл функции высоты (аргумент – длина), и т.д.

Понимание сути интегрального исчисления и умение использовать его на практике вооружает вас, как специалиста, мощным оружием в осознанном изучении окружающего мира!

Ссылка на скачивание файла с примером: vychisleniye-integralov (xls 216,0KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

history 20 ноября 2022 г.
    Группы статей

Вычислим в MS EXCEL определенный интеграл методом трапеций (англ. Trapezoidal Rule). Оценим ошибку интегрирования, построим график функции.

В интернете есть много сайтов по автоматическому вычислению интегралов аналитическими и численными методами. Но, как правило, про использованный метод численного интегрирования ничего не говорится, а корректность вычислений проверить невозможно. В данном примере все вычисления прозрачны и можно задать необходимое количество интервалов разбиения. Правда, данный метод имеет относительно невысокую точность по сравнению с другими методами (если сравнивать его с методом Симпсона и методом интерполяционного полинома Лагранжа).

Немного теории

Так как функция, стоящая под знаком интеграла в общем случае может быть любая, то значение интеграла не всегда можно вычислить аналитически. Однако, можно воспользоваться тем фактом, что согласно теории, значение интеграла численно равно площади фигуры образованной графиком функции и осью Х (фигура выделена цветом).

Таким образом, задача нахождения интеграла сводится к нахождению площади этой фигуры. Площадь фигуры в общем случае можно найти численными методами, разбивая ее на простые однотипные фигуры, например трапеции. Т.к. площадь каждой трапеции найти легко, то простым суммированием площадей можно найти и интеграл. Платой за универсальность является ошибка интегрирования, которую впрочем можно оценить (будет показано далее).

Фактически метод трапеций основан на линейной интерполяции, т.е. график функции y = f(x) представляется в виде ломаной, соединяющей точки (xi, yi) прямыми линиями.

Площадь каждой трапеции можно найти следующим образом (см. рисунок ниже).

Фактически задача по нахождению интеграла сводится в основном к построению таблицы значений функции y=f(x) для заданных Х и нахождению их суммы. Интеграл можно найти с помощью вот такой простой формулы:

Построение модели

Для определенности вычислим интеграл для функции-многочлена f(𝑥)=𝑥3−5𝑥2+6𝑥+1. График этой функции в диапазоне от 0 до 4 выглядит следующим образом (см. файл примера).

Примечание: про тонкости построения графика функции можно прочитать в этой статье https://excel2.ru/articles/grafik-vs-tochechnaya-diagramma-v-ms-excel.

В файле примера построим таблицу значений функции для 41 точки (от 0 до 40), что составляет 40 интервалов.

Напомним, что Интеграл методом трапеций можно найти с помощью вот такой простой формулы:

В MS EXCEL формула также будет очень простой =E13/2*СУММ(D20:D59).

Примечание: При вводе функции в столбец С нужно быть очень внимательным — ошибиться очень легко, т.к. формула будет выглядеть как месиво символов =B19^3-5*B19^2+6*B19+1.

Вычисленное приближенное значение интеграла для данной функции в интервале [0;4] равно 9,340, а точное 9,333, т.е. ошибка составляет менее 0,1%. Ниже показано как ее оценить.

В файле примера на листе «настраиваемый интервал» сделана форма для работы с разными количествами интервалов разбиения. При изменении количества интервалов график перестраивается автоматически, формулы для вычисления интеграла не нужно переписывать (как, впрочем, и расширять/ убавлять таблицу значений).

Ошибка вычисления

На рисунке ниже показано откуда появляется ошибка интегрирования. Для первых 2-х трапеций (образованы красными линиями) площадь меньше чем у истинной функции (синяя линия). Для следующих 2-х — площадь больше. Из этого следует, что метод трапеций хорошо работает для осциллирующих функций, когда ошибки компенсируют друг друга.

Простой многочлен был выбран в качестве демонстрационной функции, чтобы можно было вычислить интеграл точно и потом найти истинную ошибку, чтобы иметь возможность сравнить ее с оценкой.

К сожалению, для нахождения оценки ошибки потребуется вычислить первую производную. Сделать это чаще всего не сложно, но автоматизировать это в EXCEL не получится. Поэтому при изменении подинтегральной функции приходится вносить изменения в несколько формул на листе, а точнее — в 2 ячейки С19 и G31 (в файле примера они выделены красным). После ввода формул их нужно скопировать вниз.

В наем случае полученная оценка ошибки совпала с истинной ошибкой, что говорит о том что мы не ошиблись при вычислении производной и вводе формул на лист.

Совет: всегда оценивайте ошибку интегрирования.

Содержание

  1. Интегрирование функций рационально зависящих от тригонометрических функций
  2. Основные тригонометрические формулы
  3. Примеры интегрирования тангенса и котангенса
  4. Вычисление площадей отдельных трапеций
  5. Теория.
  6. Стандартные подстановки при интегрировании тригонометрических функций
  7. Применение знаний, формирование умений и навыков
  8. Распространенные примеры интегрирования косинуса
  9. Интегрирование обратных тригонометрических функций
  10. Общий подход
  11. Методика вычисленияопределённого интеграла
  12. Интегрирование выражений вида R(sinx, cosx)
  13. Согласованиеединиц измерения

Интегрирование функций рационально зависящих от тригонометрических функций

1. Интегралы вида sinnxdx, cosnxdx, n>0
a) Если n нечётное, то одну степень sinx (либо cosx) следует внести под знак дифференциала, а от оставшейся чётной степени следует перейти к противоположной функции.
б) Если n чётное, то пользуемся формулами понижения степени
2sin2x=1-cos2x, 2cos2x=1+cos2x.
2. Интегралы вида tgnxdx, ctgnxdx, где n – целое.
Необходимо использовать формулы

3. Интегралы вида sinnx·cosmx dx
а) Пусть m и n разной чётности. Применяем подстановку t=sin x, если n – нечётное либо t=cos x, если m – нечётное.
б) Если m и n чётные, то пользуемся формулами понижения степени
2sin2x=1-cos2x, 2cos2x=1+cos2x.
4. Интегралы вида
3. Интегралы вида sinnx·cosmx dx
а) Пусть m и n разной чётности. Применяем подстановку t=sin x, если n – нечётное либо t=cos x, если m – нечётное.
б) Если m и n чётные, то пользуемся формулами понижения степени
2sin2x=1-cos2x, 2cos2x=1+cos2x.
4. Интегралы вида

Если числа m и n одинаковой чётности, то используем подстановку t=tg x. Часто бывает удобным применить приём тригонометрической единицы.
5. sin(nx)·cos(mx)dx, cos(mx)·cos(nx)dx, sin(mx)·sin(nx)dx

Воспользуемся формулами преобразования произведения тригонометрических функций в их сумму:

  • sin α·cos β = ½(sin(α+β)+sin(α-β))
  • cos α·cos β = ½(cos(α+β)+cos(α-β))
  • sin α·sin β = ½(cos(α-β)-cos(α+β))
  • Решение онлайн
  • Видеоинструкция

С помощью данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word. Также рекомендуется ознакомиться с возможностью нахождения интегралов онлайн.

Примеры
1. Вычислить интеграл cos4x·sin3xdx.
Делаем замену cos(x)=t. Тогда cos4x·sin3xdx =
2. Вычислить интеграл .
Делая замену sin x=t, получаем

3. Найти интеграл .
Делаем замену tg(x)=t. Подставляя, получаем



Заметим, что замена ctg(x)=t здесь удобнее, так как тогда , , и поэтому

Основные тригонометрические формулы

Ниже приведены некоторые тригонометрические формулы, которые могут понадобится при интегрировании тригонометрических функций.

sin2 a + cos2 a = 1

sin (a+b) = sin a cos b + cos a sin b
cos (a+b) = cos a cos b – sin a sin b
sin 2a = 2 sin a cos a
cos 2a = cos2 a – sin2 a = 2 cos2 a – 1 = 1 – 2 sin2 a

Примеры интегрирования тангенса и котангенса

Пример 1. Найти интеграл от тангенса tan(4*x).
Вычисления: Применяем приведенную выше методику для интегрирования тангенса

Здесь в скобках мы сначала вычисляем дифференциал от косинуса, а дальше выделяем значение, которое нам нужно достать. Далее интегрирования сводим к логарифму.
Таким образом можем записать обобщенную формулу для интегралаtan(k*x)
Int(tan(k*x),x)=-1/k*(log(cos(x)).

По этой формуле интеграл от тангенса двойного угла равен логарифму косинуса двойного угла умноженному на -0,5.
Для тангенса половины угла tan (phi / 2) интеграл равен -2 умножить на логарифм косинуса половины угла
По индукции получим формулу интеграла для тангенса одной третьей угла tan(phi/3)

Пример 2. Проинтегрировать котангенс двойного угла
Вычисления: По аналогии с формулами для тангенса мы могли бы выписать готовую формулу, но лучше выполнить промежуточные переходы чтобы Вы лучше поняли и заучили методику внесения под дифференциал

Таким образом, если имеем котангенс тройного угла то перед интегралом получим множителем 1/3
Интегралы от котангенса половины и трети угла будут иметь множителями перед логарифмом соответственно двойку и тройку
При нахождении первоначальной от тангенса и котангенса следует справа добавить постоянную
Зная данную методику, Вы знаете как найти интеграл от тангенса, аргумент которого содержит множителем произвольное число.
Вычисления определенных интегралов от тангенса и котангенса в данной статье рассматривать не будем. Если Вы вычисляли такие интегралы от простых функций то, зная синусы и косинусы углов найти определенный интеграл от тангенса или котангенса сможете без проблем.

Вычисление площадей отдельных трапеций

Теперь нужно найти площади трапеций за каждый промежуток времени. В столбце “E” будем вычислять по приведённой выше формуле площади трапеций. Полусумма оснований – это половина суммы двух последовательных мощностей дозы из столбца “D”. Так как данные идут с периодом 1 раз в минуту, а мы берём интеграл по времени, выраженному в минутах, то высота каждой трапеции будет равна единице (разница времени между каждыми двумя последовательными измерениями, например, 17ч31мин — 17ч30мин = 0ч1мин = 1мин).

Получаем формулу в ячейке “E3”: =1/2*(D3+D2)*1. Понятно, что “×1” в этой формуле можно не писать. И аналогично, с помощью маркера заполнения, распространяем формулу на весь столбец. Теперь в каждой ячейке столбца “Е” посчитана накопленная доза за 1 минуту полёта.

Вычисление площадей прямоугольных трапеций за каждый промежуток времени

Если бы данные шли не через 1 минуту, то нам нужно было бы написать формулу так:
=1/2*(D3+D2)*(МИНУТЫ(A3) – МИНУТЫ(A2)).
Правда при этом, если есть переход на следующий час, то получится отрицательное значение. Чтобы этого не произошло, впишем в формулу часы:
=1/2*(D3+D2)*(ЧАС(A3)*60+МИНУТЫ(A3)) – (ЧАС(A2)*60+МИНУТЫ(A2)).
Если переходим на следующие сутки, то нужно будет уже добавлять даты, и т.д.

Теория.

Подробно рассмотрим два наиболее точных метода численного интегрирования функции одной переменной – метод трапеций и метод парабол или метод Симпсона. Есть еще метод прямоугольников, но мы его проигнорируем из-за невысокой точности.

Все, что требуется для понимания и применения метода трапеций и метода Симпсона на практике представлено далее на рисунке.

Площадь под кривой y = f (x) разбиваем на n-1 криволинейных трапеций, у которых три стороны – это прямые линии, а одна сторона – участок кривой y=f (x). Суммарная площадь под графиком функции на участке от x1 до xn – это и есть искомая величина, которая является определенным интегралом функции на этом участке и находится как сумма площадей всех криволинейных трапеций.

Точно вычислить аналитически площадь криволинейной трапеции бывает сложно или даже невозможно.

Для приближенного вычисления площади криволинейной трапеции можно заменить участок кривой прямой линией и, получив простую фигуру – обычную трапецию, найти по известной формуле ее площадь. В этом суть метода трапеций.

Если участок кривой линии над двумя криволинейными трапециями заменить параболой, проведенной через три характерные точки, то получим новую криволинейную трапецию с одной из сторон в виде параболы. Количество новых фигур будет в два раза меньше, чем количество исходных трапеций. Площадь этих новых фигур вычисляется по простой формуле. В этом смысл метода Симпсона.

Идею замены участка любой кривой участком параболы высказывал Исаак Ньютон, но первым вывел формулу английский математик Томас Симпсон. Метод Симпсона для вычисления интегралов является самым точным из приближенных численных методов.

Если вычисление интегралов методом трапеций не имеет ограничений, то для того, чтобы реализовать метод Симпсона необходимо выполнить два условия.

1. Разбить площадь на четное количество частей, то есть n должно быть нечетным числом!

2. Расстояния между точками по оси x должны быть одинаковыми!

Стандартные подстановки при интегрировании тригонометрических функций

Здесь мы рассмотрим стандартные подстановки, с помощью которых, в большинстве случаев, выполняется интегрирование тригонометрических функций.

Применение знаний, формирование умений и навыков

Практическое задание «Вычисление определенных интегралов методом трапеции в среде Microsoft Excel.»

Состав задания:

  1. Ознакомиться с теоретической частью задания;
  2. Провести расчет для своего варианта индивидуального задания в Microsoft Excel
  3. Оформить презентацию в Ms PowerPoint, включающую:
    – постановку задачи;
    – алгоритм расчета;
    – таблицу с расчетом из Ms Excel, график исходной функции;
    – результат расчета и его анализ.

Индивидуальное расчетное задание:

  1. Найдите приближенное значение интеграла заданной функции f(x)= 1/(1+x4)1/2 на отрезке [0; 4]
    по формуле трапеций, разбивая отрезок [0; 4] на 8 равных частей. Оцените погрешность приближенного вычисления интеграла при таком разбиении отрезка.
  2. Представьте графически поставленную задачу.

Постановка задачи:

Дано: f(x)= 1/(1+x4)1/2 на отрезке [0; 4]

Найти: приближенное значение интеграла заданной функции по формуле трапеций, приняв предельное значение погрешности приближенного вычисления интеграла равным ε=0,02.

Таблица Исходная информация

Отрезок [a;b]

Функция f(x)

a

b

Аналитическая запись

Представление в Excel

0

4

1/(1+x4)1/2

=СТЕПЕНЬ((1+СТЕПЕНЬ(B16;4));-1/2)

Анализ заданной функции и результаты вычислений в Ms Excel

Расчет площади

xi

f(xi)

Коэффициенты формулы трапеций

Вычисление Ci*f(xi)

N=2

N=4

N=8

N=2

N=4

N=8

0

1,000

0,5

0,5

0,5

0,500

0,500

0,500

0,5

0,970

0

0

1

0,000

0,000

0,970

1

0,707

0

1

1

0,000

0,707

0,707

1,5

0,406

0

1

0,000

0,000

0,406

2

0,243

1

1

1

0,243

0,243

0,243

2,5

0,158

0

0

1

0,000

0,000

0,158

3

0,110

0

1

1

0,000

0,110

0,110

3,5

0,081

0

0

1

0,000

0,000

0,081

4

0,062

0,5

0,5

0,5

0,031

0,031

0,031

Сумма

0,774

1,591

3,207

Значения интеграла

Количество узлов

N=2

N=4

N=8

S

1,55кв.мм

1,59кв.мм

1,60кв.мм

Погрешность

0,028

0,008

Ответ: приближенное значение интеграла заданной функции по формуле трапеций равна 1,60кв.мм, значение погрешности приближенного вычисления интеграла равным ε=0,008.

Задания для индивидуальной работы студентов по вариантам:

Найдите приближенное значение интеграла заданной функции f(x) на отрезке [a; b] (см. таблицу ) по формуле трапеций, разбивая отрезок [a; b] на 8 равных частей. Оцените погрешность приближенного вычисления интеграла при таком разбиении отрезка.

Представьте графически поставленную задачу.

N

отрезок [a; b]

Функция f(x)

1

1/(1+x²)1/2

2

5x4+2x²-х

3

ех/(х+5) + x³/(х+4)

4

(4+x³)1/2

5

1/(5x4+2x²+2)

6

[10; 18]

4/(1+x4)1/2)1/2

7

6/(1+x²)1/2

8

5x4+2x²-х

9

5/(1+x4)1/2)1/2

10

12/(5x²+x+6)

11

е1/(х+5) + 1/(х+4)

12

(х+x5)1/2

13

1/(1+x4)1/2

14

2+(х/(1+x4)1/2)

На сегодняшнем занятии мы отработали навыки вычисления определенных интегралов методом трапеции в среде электронных таблиц MS Excel. Выработали умения применять теоретические знания в практических расчетах.

Распространенные примеры интегрирования косинуса

Пример 1. Найти интеграл от cos(5*x).
Решение: По формуле интегрируем косинус

Пример 2. Вычислить интеграл от cos(7*x).
Решение: Выполняем интегрирование

Пример 3. Проинтегрировать выражение cos (11*x).
Решение: Вычисляем неопределенный интеграл

Пример 4. Найти интеграл функции y= cos (x/5).
Решение: Записываем неопределенный интеграл

Пример 5. Найти интеграл функции y= cos (x/6).
Решение: Проинтегрируем по приведенной выше формуле
Как только Вы освоите методику интегрирования на простых примерах, смело можете переходить к определенным интегралам и первообразным. Для отискания определенного интеграла проводим интегрирование, а дальше подставляем пределы интегрирования и находим изменение первообразной функции.

Пример 6. Проинтегрировать косинус двойного угла y = cos (2 * x) от 0 до 45 градусов.
Решение: Находим указанный интеграл от косинуса

Пример 7. Найти интеграл от косинуса y = cos (x) от 0 до 60 градусов.
Решение: Вычисляем интеграл и подставляем пределы интегрирования

Пример 8. Найти первоначальную от cos (x), которая при 30 градусах равна 1.
Решение: Находим первоначальную
С наложенного условия на первоначальную вычисляем постоянную
sin(Pi/6)+C=1; C=1-
sin(Pi/6)=1-0,5=0,5.

Подставляем полученную постоянную в уравнение
На этом задача решена. На таких простых примерах Вы четко должны знать, чему равный интеграл от косинуса.
Далее полученные знания можно применять для вычисления площадей криволинейных трапеций. Это достаточно абстрактное понятие, но с помощью интегрирования находить площадь фигур достаточно просто и быстро. Следует только помнить, что площадь всегда принимает положительное значение, в то время как определенный интеграл может принимать отрицательное значение.
Например вычислим площадь и интеграл от косинуса, если переменная принадлежит интервалу от 0 до 2*Pi.
По физическому содержанию площадь равна заштрихованным поверхностям.
Находим определенный интеграл в указанных пределах
Он равен нулю. Что касается площади, то сначала следует найти точки пересечения с осью абсцисс на этом интервале
Таким образом площадь необходимо искать на трех промежутках
Ось абсцисс можем записать функцией y = 0. Таким образом на первом промежутке площадь равна интегралу от косинуса,
на втором 0-cos (x) = – cos (x) от минус косинуса и на третьем от косинуса. Все при вычислении площади зависит от того, какая функция принимает большее значение по оси ординат (Oy). Вычисляем площадь интегрированием в указаных пределах
Таким образом искомая площадь равна 4. Если иметь график функции перед глазами, то данное значение можно получить как 4 площади косинус функции, которые периодически повторяются
На этом знакомство с интегрированием косинуса завершается. Приведенная методика интегрирования позволяет вычислить 80% основных задач на интегрирование косинуса. Остальные 20% Вы научитесь после изучения способов нахождения интегралов от функций вида
Мы научим Вас, какие свертки и замены переменных следует использовать, в каких случаях целесообразно интегрировать по частям.
Интегралы от других тригонометрических и обратных к ним функций Вы найдете в категории “Интегрирование функций“.

Интегрирование обратных тригонометрических функций

Интегралы, содержащие обратные тригонометрические функции
arcsin φ, arctg φ, и т.д., где φ – некоторая алгебраическая функция от x, нередко интегрируются по частям, полагая u = arcsin φ, u = arctg φ, и т.д.

Общий подход

Вначале, если это необходимо, подынтегральное выражение нужно преобразовать, чтобы тригонометрические функции зависели от одного аргумента, который совпадал бы с переменной интегрирования.

Например, если подынтегральное выражение зависит от sin(x+a) и cos(x+b), то следует выполнить преобразование:
cos (x+b) = cos (x+a – (a–b) ) = cos (x+a) cos (b–a) + sin ( x+a ) sin (b–a).
После чего сделать замену z = x+a. В результате, тригонометрические функции будут зависеть только от переменной интегрирования z.

Когда тригонометрические функции зависят от одного аргумента, совпадающим с переменной интегрирования (допустим это z), то есть подынтегральное выражение состоит только из функций типа sin z, cos z, tg z, ctg z, то нужно сделать подстановку
.
Такая подстановка приводит к интегрированию рациональных или иррациональных функций (если есть корни) и позволяет вычислить интеграл, если он интегрируется в элементарных функциях.

Однако, часто можно найти другие методы, которые позволяют вычислить интеграл более коротким способом, основываясь на специфике подынтегрального выражения. Ниже дано изложение основных таких методов.

Методика вычисленияопределённого интеграла

Вычислять интеграл мы будем самым простым, но довольно точным методом – методом трапеций. Напомню, площадь фигуры под графиком любой кривой можно разделить на прямоугольные трапеции. Сумма площадей этих трапеций и будет искомым значением определённого интеграла.

Площадь трапеции определяется как полусумма оснований, умноженная на высоту: Sтрап = (A + B) / 2 × h Основания в нашем случае – это табличные измеренные значения мощности дозы за 2 последовательных промежутка времени, а высота – это разница времени между двумя измерениями.

Метод трапеций для вычисления значения определённого интеграла

Интегрирование выражений вида R(sinx, cosx)

Пример №1. Вычислить интегралы:

Решение.
а) Интегрирование выражений вида R(sinx, cosx), где R — рациональная функция от sin x и cos x, преобразуются в интегралы от рациональных функций с помощью универсальной тригонометрической подстановки tg(x/2) = t.
Тогда имеем

Универсальная тригонометрическая подстановка дает возможность перейти от интеграла вида R(sinx, cosx) dx к интегралу от дробно-рациональной функции, но часто такая замена ведет к громоздким выражениям. При определенных условиях эффективными оказываются более простые подстановки:

  • Если выполняется равенство R(-sin x, cos x) = -R(sin x, cos x)dx, то применяется подстановка cos x = t.
  • Если выполняется равенство R(sin x, -cos x) = -R(sin x, cos x)dx, то подстановка sin x = t.
  • Если выполняется равенство R(-sin x, -cos x) = R(sin x, cos x)dx, то подстановка tgx = tили ctg x = t.

В данном случае для нахождения интеграла
применим универсальную тригонометрическую подстановку tg(x/2) = t.
Тогда

Так как дробь неправильная, то, выделяя целую часть, получим

Возвращась к исходной переменной будем иметь

b) Во втором примере рассмотрим важный частный случай, когда общее выражение R(sinx, cosx) dx имеет вид sinmx·cosnxdx. В этом частном случае, если m нечетно, следует применить подстановку cos x = t. Если нечетно n, следует применить подстановку sin x = t. Если оба показателя тип — четные неотрицательные числа (в частности, одно из них может быть равным нулю), то выполняют замену по известным тригонометрическим формулам:
В данном случае

Ответ:

Согласованиеединиц измерения

В нашем примере измерения мощности дозы радиации даётся в мкЗв/час, а шкала времени – с точностью до минут. Мы не можем брать интеграл по времени, измеряемому в минутах, для величины, измеряемой в часах. Поэтому необходимо перевести мкЗв/час в мкЗв/мин.

Для перевода просто разделим мощность дозы в мкЗв/час построчно на количество минут в часе, т.е. на 60. Добавим ещё один столбец в нашу таблицу. На иллюстрации это столбец “D”. В столбце “D” в строке 2 вписываем =С2/60 А потом с помощью маркера заполнения распространяем эту формулу на все остальные ячейки в столбце “D”, (т.е. тянем мышью чёрный прямоугольник в правом нижнем углу ячейки). Таким образом, в столбце “D” у нас появятся значения мощности дозы радиации, измеряемые в микрозивертах в минуту для каждой минуты перелёта

Согласуем единицы измерения по шкале времени и шкале мощности дозы

Источники

  • https://math.semestr.ru/math/integration-trigonometric.php
  • https://1cov-edu.ru/mat_analiz/integrali/neopredelennie/trigonometricheskie/
  • https://yukhym.com/ru/integrirovanie-funktsii/integral-tangensa-i-kotangensa.html
  • https://soltau.ru/index.php/themes/kompyutery-i-programmy/item/369-kak-v-excel-vychislit-opredeljonnyj-integral
  • http://al-vo.ru/spravochnik-excel/vychislenie-integralov-v-excel.html
  • https://urok.1sept.ru/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/674768/
  • https://yukhym.com/ru/integrirovanie-funktsii/integral-kosinusa.html

aave

30 сентября 2015

Давайте разберёмся, как вычислить определённый интеграл таблично заданной функции с помощью программы Excel из состава Microsoft Office.

Как вычислить определённый интеграл в Excel

Вам понадобится

  • — компьютер с установленным приложением MS Excel;
  • — таблично заданная функция.

Инструкция

Допустим, у нас есть таблично заданная некоторая величина. Для примера пусть это будет накопленная доза радиации при авиаперелёте. Скажем, был такой эксперимент: человек с дозиметром летел на самолёте из пункта А в пункт Б и периодически измерял дозиметром мощность дозы (измеряется в микрозивертах в час). Вас, возможно, это удивит, но при обычном перелёте на самолёте человек получает дозу радиации в 10 раз больше, чем фоновый уровень. Но воздействие это кратковременное и поэтому не опасное. По результатам измерений у нас есть таблица вот такого формата: Время — Мощность дозы.

Таблично заданная величина

Суть метода в том, что определённый интеграл — это площадь под графиком нужной нам величины. В нашем примере, если полёт длился почти 2 часа, с 17:30 до 19:27 (см. рисунок), то чтобы найти накопленную дозу, нужно определить площадь фигуры под графиком мощности дозы — графиком таблично заданной величины.

Определённый интеграл - площадь под фигурой

Вычислять интеграл мы будем самым простым, но довольно точным методом — методом трапеций. Напомню, каждую кривую можно разделить на трапеции. Сумма площадей этих трапеций и будет искомым интегралом.
Площадь трапеции определяется просто: полусумма оснований, умноженная на высоту. Основания в нашем случае — это табличные измеренные значения мощности дозы за 2 последовательных промежутка времени, а высота — это разница времени между двумя измерениями.

Вычисление площади трапеции

В нашем примере измерения мощности дозы радиации даётся в мкЗв/час. Переведём это в мкЗв/мин, т.к. данные даются с периодичностью 1 раз в минуту. Это нужно для согласования единиц измерения. Мы не можем брать интеграл по времени, измеряемому в минутах, от величины, измеряемой в часах.
Для перевода просто разделим мощность дозы в мкЗв/час построчно на 60. Добавим ещё один столбец в нашу таблицу. На иллюстрации в столбце «D» в строке 2 вписываем «=С2/60». А потом с помощью маркера заполнения (тянем мышью чёрный прямоугольник в правом нижнем углу ячейки) распространяем эту формулу на все остальные ячейки в столбце «D».

Перевод единиц

Теперь нужно найти площади трапеций за каждый промежуток времени. В столбце «E» будем вычислять по приведённой выше формуле площади трапеций.
Полусумма оснований — это половина суммы двух последовательных мощностей дозы из столбца «D». Так как данные идут с периодом 1 раз в минуту, а мы берём интеграл по времени, выраженному в минутах, то высота каждой трапеции будет равна единице (разница времени между каждыми двумя последовательными измерениями, например, 17ч31м — 17ч30м = 0ч1м).
Получаем формулу в ячейке «E3»: «=1/2*(D2+D3)*1». Понятно, что «*1» можно не писать, я сделал это просто для полноты картины. Рисунок поясняет всё более наглядно.
Аналогично, с помощью маркера заполнения, распространяем формулу на весь столбец. Теперь в каждой ячейке столбца «Е» посчитана накопленная доза за 1 минуту полёта.

Вычисление площадей трапеций

Осталось найти сумму вычисленных площадей трапеций. Можно в ячейке «F2» написать формулу «=СУММ(E:E)», это и будет искомым интегралом — сумма всех значений в столбце «E».
Можно сделать немного сложнее, чтобы определить накопленную дозу в разные моменты полёта. Для этого в ячейке «F4» впишем формулу: «=СУММ(E$3:E4)» и маркером заполнения распространим на весь столбец «F». Обозначение «E$3» говорит программе Excel, что менять индекс первой ячейки, от которой ведём счёт, не нужно.
Построим график по столбцам «F» и «A», т.е. изменение накопленной дозы радиации во времени. Наглядно видно увеличение интеграла, как и должно быть, и окончательное значение накопленной за двухчасовой полёт дозы радиации равно примерно 4,5 микрозиверт.
Таким образом, мы только что нашли определённый интеграл таблично заданной функции в программе Excel на реальном физическом примере.

Вычисление интеграла

Понравилась статья? Поделить с друзьями:
  • Двоичный код в word
  • Двойной индекс в word
  • Двойной выпадающий список excel
  • Двойное условие если в excel примеры
  • Двойное условие в excel впр