I have always loved history. There is a deep seeded belief in me that it is vitally important to know where we came from in order to know where we are going. As a person who calls himself a technologist I wanted to understand where the word technology comes from in order to better to understand where technology is going. In this post I examine the origin of the word technology in a hope of better understanding its evolution and thus purpose in my practice as a technologist.
It’s Greek to Me
Technology is not an old word in English. The ancient Greeks used the word techne which meant skill with art, or craft. In fact Plato and Plotinus had an entire hierarchy of knowledge that expanded in an ascending scale from crafts to science and it moved from the physical to the intellectual. Technical art ranked somewhere in the middle of this schema.
Aristotle had a more neutral, simpler and far less value-laden concept of techne, which he described in the Nicomachean Ethics, Book 6, Chapters 3 and 4, where he used architecture as his example. He defined techne as a “rational faculty exercised in making something…a productive quality exercised in combo with true reason.” Aristotle believed that the business of techne is to “bring something into existence which has its efficient cause in the maker and not in itself.” It is also important to note that Aristotle related techne to the crafts and sciences, most notably through mathematics.
To the Greeks, work with the hands was inferior to philosophical speculation and techne was a more restricted term than the capacious modern term of technology that we use today. Since the Greeks use of the word techne was more focused, many classical thinkers believed that the Greeks were just as mistrustful of technological change as they were with political and social change.
When in Rome
By contrast the Romans had a much deeper appreciation for techne than their Greek counterparts. In De Natura Deorum the Roman philosopher Cicero praised the human ability to transform the environment and create a “second nature”. Other Roman poets praised techne as well with the construction of roads and the conveniences of well-built villas.
The Roman poet Statius devoted an entire poem to praising techne and technological progress. The Roman writer Plity the Elder too often praised techne and technological progress with his writings of the skilled laborers of the day.
Medieval Times
The term technology did not exist in the Middle Ages. Writers of the time instead used the word mechanical arts when referencing crafts and art with a physical aspect such as architecture, weaponry, agriculture, commerce and theatre. What we would call technological innovation during the Middle Ages typically took place with little reference to scientific knowledge or information.
The Renaissance
It is during this time period that a full expression of the modern attitude toward technology appeared. In his 1627 book New Atlantis, Francis Bacon imagined a perfect society whose king was advised by scientists and who’s engineers were organized into research groups at an institution that was called Salomon’s House. These scientists and engineers could predict the weather, had invented refrigeration, submarines, flying machines, loudspeakers and conducted amazing medical procedures. Bacon’s vision later served as the inspiration to others to form the Royal Society in London in 1662,
Danke
We own thanks to Germany for their broader definition of words like teknologie and the even broader technik. In fact in the early 20th century the word technik was translated into English as technics. Teknologie, from 1775 , meant a system of classification for the practical arts until it was abandoned in 1840.
In the 1800’s, German engineers made the word technik a central part of their self-definition and elaborated on a discourse that related the word to philosophy, economics and higher culture. In fact the word technik meant the “totality of tools, machines, systems and processes used in the practice arts and engineering.”
Present Meaning
It was somewhere between 1820 and 1910 that the word technology acquired its present meaning. The word, however, remained unstable until the later half of the 20th century where it evolved into vague abstraction that was further complicated in the 1990’s when newspapers, stock traders and bookstores made technology a synonym for computers, telephones and ancillary devices as David Nye argues in his book Technology Matters: Questions to Live With.
The word technology has only be part of the English language for a little over 100 years where it has come to reference all of the skills, machines and systems one might study at a technical university, or a term for complex systems of machines and the techniques in which we use to operate them.
Why This Matters?
Technology empowerment relies on the understanding that the word holds many different meanings to many different people. In some respects the word holds cultural and societal attitudes deeply towards it, its uses and its teachings. In modern times the word is so abstract that if you were to Google “What is Technology?” you would receive over 3 billion results.
It is my belief that the culture in which the technology is going to be used, served and taught should be the one to clearly define it. In order to accomplish this we must look to the past to see how the word’s meaning has evolved over time and then look towards the future to understand how the word will continue to evolve and then prepare ourselves and our learners for those inevitable shifts that are most likely to occur.
References
Nye, D. E. (2006). Technology matters: Questions to live with. Cambridge, MA: MIT Press.
Whitney, E. (2004). Medieval Science and Technology. Greenwood Publishing Group.
Technology is the application of knowledge for achieving practical goals in a reproducible way.[1] The word technology can also mean the products resulting from such efforts,[2]: 117 [3] including both tangible tools such as utensils or machines, and intangible ones such as software. Technology plays a critical role in science, engineering, and everyday life.
Technological advancements have led to significant changes in society. The earliest known technology is the stone tool, used during prehistoric times, followed by the control of fire, which contributed to the growth of the human brain and the development of language during the Ice Age. The invention of the wheel in the Bronze Age allowed greater travel and the creation of more complex machines. More recent technological inventions, including the printing press, telephone, and the Internet, have lowered barriers to communication and ushered in the knowledge economy.
While technology contributes to economic development and improves human prosperity, it can also have negative impacts like pollution and resource depletion, and can cause social harms like technological unemployment resulting from automation. As a result, there are ongoing philosophical and political debates about the role and use of technology, the ethics of technology, and ways to mitigate its downsides.
Etymology
Technology is a term dating back to the early 17th century that meant ‘systematic treatment’ (from Greek Τεχνολογία, from the Greek: τέχνη, romanized: tékhnē, lit. ‘craft, art’ and -λογία, ‘study, knowledge’).[4][5] It is predated in use by the Ancient Greek word tékhnē, used to mean ‘knowledge of how to make things’, which encompassed activities like architecture.[6]
Starting in the 19th century, continental Europeans started using the terms Technik (German) or technique (French) to refer to a ‘way of doing’, which included all technical arts, such as dancing, navigation, or printing, whether or not they required tools or instruments.[2]: 114–115 At the time, Technologie (German and French) referred either to the academic discipline studying the «methods of arts and crafts», or to the political discipline «intended to legislate on the functions of the arts and crafts.»[2]: 117 Since the distinction between Technik and Technologie is absent in English, both were translated as technology. The term was previously uncommon in English and mostly referred to the academic discipline, as in the Massachusetts Institute of Technology.[7]
In the 20th century, as a result of scientific progress and the Second Industrial Revolution, technology stopped being considered a distinct academic discipline and took on its current-day meaning: the systemic use of knowledge to practical ends.[2]: 119
History
Prehistoric
Tools were initially developed by hominids through observation and trial and error.[8] Around 2 Mya (million years ago), they learned to make the first stone tools by hammering flakes off a pebble, forming a sharp hand axe.[9] This practice was refined 75 kya (thousand years ago) into pressure flaking, enabling much finer work.[10]
The discovery of fire was described by Charles Darwin as «possibly the greatest ever made by man».[11] Archeological, dietary, and social evidence point to «continuous [human] fire-use» at least 1.5 Mya.[12] Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten.[13] The cooking hypothesis proposes that the ability to cook promoted an increase in hominid brain size, though some researchers find the evidence inconclusive.[14] Archeological evidence of hearths was dated to 790 kya; researchers believe this is likely to have intensified human socialization and may have contributed to the emergence of language.[15][16]
Other technological advances made during the Paleolithic era include clothing and shelter.[17] No consensus exists on the approximate time of adoption of either technology, but archeologists have found archeological evidence of clothing 90-120 kya[18] and shelter 450 kya.[17] As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380 kya, humans were constructing temporary wood huts.[19][20] Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa around 200 kya, initially moving to Eurasia.[21][22][23]
Neolithic
An array of Neolithic artifacts, including bracelets, axe heads, chisels, and polishing tools
The Neolithic Revolution (or First Agricultural Revolution) brought about an acceleration of technological innovation, and a consequent increase in social complexity.[24] The invention of the polished stone axe was a major advance that allowed large-scale forest clearance and farming.[25] This use of polished stone axes increased greatly in the Neolithic but was originally used in the preceding Mesolithic in some areas such as Ireland.[26] Agriculture fed larger populations, and the transition to sedentism allowed for the simultaneous raising of more children, as infants no longer needed to be carried around by nomads. Additionally, children could contribute labor to the raising of crops more readily than they could participate in hunter-gatherer activities.[27][28]
With this increase in population and availability of labor came an increase in labor specialization.[29] What triggered the progression from early Neolithic villages to the first cities, such as Uruk, and the first civilizations, such as Sumer, is not specifically known; however, the emergence of increasingly hierarchical social structures and specialized labor, of trade and war amongst adjacent cultures, and the need for collective action to overcome environmental challenges such as irrigation, are all thought to have played a role.[30]
Continuing improvements led to the furnace and bellows and provided, for the first time, the ability to smelt and forge gold, copper, silver, and lead – native metals found in relatively pure form in nature.[31] The advantages of copper tools over stone, bone and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 10 ka).[32] Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4,000 BCE). The first use of iron alloys such as steel dates to around 1,800 BCE.[33][34]
Ancient
The wheel was invented circa 4,000 BCE.
After harnessing fire, humans discovered other forms of energy. The earliest known use of wind power is the sailing ship; the earliest record of a ship under sail is that of a Nile boat dating to around 7,000 BCE.[35] From prehistoric times, Egyptians likely used the power of the annual flooding of the Nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and «catch» basins.[36] The ancient Sumerians in Mesopotamia used a complex system of canals and levees to divert water from the Tigris and Euphrates rivers for irrigation.[37]
Archaeologists estimate that the wheel was invented independently and concurrently in Mesopotamia (in present-day Iraq), the Northern Caucasus (Maykop culture), and Central Europe.[38] Time estimates range from 5,500 to 3,000 BCE with most experts putting it closer to 4,000 BCE.[39] The oldest artifacts with drawings depicting wheeled carts date from about 3,500 BCE.[40] More recently, the oldest-known wooden wheel in the world was found in the Ljubljana Marsh of Slovenia.[41]
The invention of the wheel revolutionized trade and war. It did not take long to discover that wheeled wagons could be used to carry heavy loads. The ancient Sumerians used a potter’s wheel and may have invented it.[42] A stone pottery wheel found in the city-state of Ur dates to around 3,429 BCE,[43] and even older fragments of wheel-thrown pottery have been found in the same area.[43] Fast (rotary) potters’ wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources. The first two-wheeled carts were derived from travois[44] and were first used in Mesopotamia and Iran in around 3,000 BCE.[44]
The oldest known constructed roadways are the stone-paved streets of the city-state of Ur, dating to circa 4,000 BCE,[45] and timber roads leading through the swamps of Glastonbury, England, dating to around the same period.[45] The first long-distance road, which came into use around 3,500 BCE,[45] spanned 2,400 km from the Persian Gulf to the Mediterranean Sea,[45] but was not paved and was only partially maintained.[45] In around 2,000 BCE, the Minoans on the Greek island of Crete built a 50 km road leading from the palace of Gortyn on the south side of the island, through the mountains, to the palace of Knossos on the north side of the island.[45] Unlike the earlier road, the Minoan road was completely paved.[45]
Ancient Minoan private homes had running water.[47] A bathtub virtually identical to modern ones was unearthed at the Palace of Knossos.[47][48] Several Minoan private homes also had toilets, which could be flushed by pouring water down the drain.[47] The ancient Romans had many public flush toilets,[48] which emptied into an extensive sewage system.[48] The primary sewer in Rome was the Cloaca Maxima;[48] construction began on it in the sixth century BCE and it is still in use today.[48]
The ancient Romans also had a complex system of aqueducts,[46] which were used to transport water across long distances.[46] The first Roman aqueduct was built in 312 BCE.[46] The eleventh and final ancient Roman aqueduct was built in 226 CE.[46] Put together, the Roman aqueducts extended over 450 km,[46] but less than 70 km of this was above ground and supported by arches.[46]
Pre-modern
Innovations continued through the Middle Ages with the introduction of silk production (in Asia and later Europe), the horse collar, and horseshoes. Simple machines (such as the lever, the screw, and the pulley) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks.[49] A system of universities developed and spread scientific ideas and practices, including Oxford and Cambridge.[50]
The Renaissance era produced many innovations, including the introduction of the movable type printing press to Europe, which facilitated the communication of knowledge. Technology became increasingly influenced by science, beginning a cycle of mutual advancement.[51]
Modern
The automobile revolutionized personal transportation.
Starting in the United Kingdom in the 18th century, the discovery of steam power set off the Industrial Revolution, which saw wide-ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system.[52] This was followed a century later by the Second Industrial Revolution which led to rapid scientific discovery, standardization, and mass production. New technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. These technological advances led to significant developments in medicine, chemistry, physics, and engineering.[53] They were accompanied by consequential social change, with the introduction of skyscrapers accompanied by rapid urbanization.[54] Communication improved with the invention of the telegraph, the telephone, the radio, and television.[55]
The 20th century brought a host of innovations. In physics, the discovery of nuclear fission in the Atomic Age led to both nuclear weapons and nuclear power. Computers were invented and later shifted from analog to digital in the Digital Revolution. Information technology, particularly optical fiber and optical amplifiers led to the birth of the Internet, which ushered in the Information Age. The Space Age began with the launch of Sputnik 1 in 1957, and later the launch of crewed missions to the moon in the 1960s. Organized efforts to search for extraterrestrial intelligence have used radio telescopes to detect signs of technology use, or technosignatures, given off by alien civilizations. In medicine, new technologies were developed for diagnosis (CT, PET, and MRI scanning), treatment (like the dialysis machine, defibrillator, pacemaker, and a wide array of new pharmaceutical drugs), and research (like interferon cloning and DNA microarrays).[56]
Complex manufacturing and construction techniques and organizations are needed to make and maintain more modern technologies, and entire industries have arisen to develop succeeding generations of increasingly more complex tools. Modern technology increasingly relies on training and education – their designers, builders, maintainers, and users often require sophisticated general and specific training.[57] Moreover, these technologies have become so complex that entire fields have developed to support them, including engineering, medicine, and computer science; and other fields have become more complex, such as construction, transportation, and architecture.
Impact
This section needs expansion with: see recommended resources on the talk page. You can help by adding to it. (September 2022) |
Technological change is the largest cause of long-term economic growth.[58][59] Throughout human history, energy production was the main constraint on economic development, and new technologies allowed humans to significantly increase the amount of available energy. First came fire, which made edible a wider variety of foods, and made it less physically demanding to digest them. Fire also enabled smelting, and the use of tin, copper, and iron tools, used for hunting or tradesmanship. Then came the agricultural revolution: humans no longer needed to hunt or gather to survive, and began to settle in towns and cities, forming more complex societies, with militaries and more organized forms of religion.[60]
Technologies have contributed to human welfare through increased prosperity, improved comfort and quality of life, and medical progress, but they can also disrupt existing social hierarchies, cause pollution, and harm individuals or groups.
Recent years have brought about a rise in social media’s cultural prominence, with potential repercussions on democracy, and economic and social life. Early on, the internet was seen as a «liberation technology» that would democratize knowledge, improve access to education, and promote democracy. Modern research has turned to investigate the internet’s downsides, including disinformation, polarization, hate speech, and propaganda.[61]
Since the 1970s, technology’s impact on the environment has been criticized, leading to a surge in investment in solar, wind, and other forms of clean energy.
Jobs
Since the invention of the wheel, technologies have helped increase humans’ economic output. Past automation has both substituted and complemented labor; machines replaced humans at some lower-paying jobs (for example in agriculture), but this was compensated by the creation of new, higher-paying jobs.[62] Studies have found that computers did not create significant net technological unemployment. [63] Due to artificial intelligence being far more capable than computers, and still being in its infancy, it is not known whether it will follow the same trend; the question has been debated at length among economists and policymakers. A 2017 survey found no clear consensus among economists on whether AI would increase long-term unemployment.[64] According to the World Economic Forum’s «The Future of Jobs Report 2020», AI is predicted to replace 85 million jobs worldwide, and create 97 million new jobs by 2025.[65][66] From 1990 to 2007, a study in the U.S by MIT economist Daron Acemoglu showed that an addition of one robot for every 1,000 workers decreased the employment-to-population ratio by 0.2%, or about 3.3 workers, and lowered wages by 0.42%.[67][68] Concerns about technology replacing human labor however are long-lasting. As US president Lyndon Johnson said in 1964, “Technology is creating both new opportunities and new obligations for us, opportunity for greater productivity and progress; obligation to be sure that no workingman, no family must pay an unjust price for progress.” upon signing the National Commission on Technology, Automation, and Economic Progress bill.[69][70][71][72][73]
Security
With the growing reliance of technology, there have been security and privacy concerns along with it. Billions of people use different online payment methods, such as WeChat Pay, PayPal, Alipay, and much more to help transfer money. Although security measures are placed, some criminals are able to bypass them.[74] In March 2022, North Korea used Blender.io, a mixer which helped them to hide their cryptocurrency exchanges, to launder over $20.5 million in cryptocurrency, from Axie Infinity, and steal over $600 million worth of cryptocurrency from the games owner. Because of this, the U.S. Treasury Department sanctioned Blender.io, which marked the first time it has taken action against a mixer, to try and crack down on North Korean hackers.[75][76] The privacy of cryptocurrency has been debated. Although many customers like the privacy of cryptocurrency, many also argue that it needs more transparency and stability.[74]
Environmental
Technology has impacted the world with negative and positive environmental impacts, which are usually the reverse of the initial damage, such as; the creation of pollution and the attempt to undo said pollution,[77] deforestation and the reversing of deforestation,[78] and oil spills. All of these have had a significant impact on the environment of the earth. As technology has advanced, so has the negative environmental impact, with the releasing of greenhouse gases, like methane and carbon dioxide, into the atmosphere, causing the greenhouse effect, gradually heating the earth and causing global warming. All of this has become worse with the advancement of technology.[79]
Pollution
Pollution, the presence of contaminants in an environment that causes adverse effects, could have been present as early as the Inca empire. They used a lead sulfide flux in the smelting of ores, along with the use of a wind-drafted clay kiln, which released lead into the atmosphere and the sediment of rivers.[80]
Philosophy
Philosophy of technology is a branch of philosophy that studies the «practice of designing and creating artifacts», and the «nature of the things so created.»[81] It emerged as a discipline over the past two centuries, and has grown «considerably» since the 1970s.[82] The humanities philosophy of technology is concerned with the «meaning of technology for, and its impact on, society and culture».[81]
Initially, technology was seen as an extension of the human organism that replicated or amplified bodily and mental faculties.[83] Marx framed it as a tool used by capitalists to oppress the proletariat, but believed that technology would be a fundamentally liberating force once it was «freed from societal deformations». Second-wave philosophers like Ortega later shifted their focus from economics and politics to «daily life and living in a techno-material culture,» arguing that technology could oppress «even the members of the bourgeoisie who were its ostensible masters and possessors.» Third-stage philosophers like Don Ihde and Albert Borgmann represent a turn toward de-generalization and empiricism, and considered how humans can learn to live with technology.[82][page needed]
Early scholarship on technology was split between two arguments: technological determinism, and social construction. Technological determinism is the idea that technologies cause unavoidable social changes.[84]: 95 It usually encompasses a related argument, technological autonomy, which asserts that technological progress follows a natural progression and cannot be prevented.[85] Social constructivists[who?] argue that technologies follow no natural progression, and are shaped by cultural values, laws, politics, and economic incentives. Modern scholarship has shifted towards an analysis of sociotechnical systems, «assemblages of things, people, practices, and meanings», looking at the value judgments that shape technology.[84][page needed]
Cultural critic Neil Postman distinguished tool-using societies from technological societies and from what he called «technopolies,» societies that are dominated by an ideology of technological and scientific progress to the detriment of other cultural practices, values, and world views.[86] Herbert Marcuse and John Zerzan suggest that technological society will inevitably deprive us of our freedom and psychological health.[87]
Ethics
The ethics of technology is an interdisciplinary subfield of ethics that analyzes technology’s ethical implications and explores ways to mitigate the potential negative impacts of new technologies. There is a broad range of ethical issues revolving around technology, from specific areas of focus affecting professionals working with technology to broader social, ethical, and legal issues concerning the role of technology in society and everyday life.[88]
Prominent debates have surrounded genetically modified organisms, the use of robotic soldiers, algorithmic bias, and the issue of aligning AI behavior with human values[89]
Technology ethics encompasses several key fields. Bioethics looks at ethical issues surrounding biotechnologies and modern medicine, including cloning, human genetic engineering, and stem cell research. Computer ethics focuses on issues related to computing. Cyberethics explores internet-related issues like intellectual property rights, privacy, and censorship. Nanoethics examines issues surrounding the alteration of matter at the atomic and molecular level in various disciplines including computer science, engineering, and biology. And engineering ethics deals with the professional standards of engineers, including software engineers and their moral responsibilities to the public.[90]
A wide branch of technology ethics is concerned with the ethics of artificial intelligence: it includes robot ethics, which deals with ethical issues involved in the design, construction, use, and treatment of robots,[91] as well as machine ethics, which is concerned with ensuring the ethical behavior of artificial intelligent agents.[92] Within the field of AI ethics, significant yet-unsolved research problems include AI alignment (ensuring that AI behaviors are aligned with their creators’ intended goals and interests) and the reduction of algorithmic bias. Some researchers have warned against the hypothetical risk of an AI takeover, and have advocated for the use of AI capability control in addition to AI alignment methods.
Other fields of ethics have had to contend with technology-related issues, including military ethics, media ethics, and educational ethics.
Futures studies
This section needs expansion with: see recommended resources on the talk page. You can help by adding to it. (September 2022) |
Futures studies is the systematic and interdisciplinary study of social and technological progress. It aims to quantitatively and qualitatively explore the range of plausible futures and to incorporate human values in the development of new technologies.[93]: 54 More generally, futures researchers are interested in improving «the freedom and welfare of humankind».[93]: 73 It relies on a thorough quantitative and qualitative analysis of past and present technological trends, and attempts to rigorously extrapolate them into the future.[93] Science fiction is often used as a source of ideas.[93]: 173 Futures research methodologies include survey research, modeling, statistical analysis, and computer simulations.[93]: 187
Existential risk
Existential risk researchers analyze risks that could lead to human extinction or civilizational collapse, and look for ways to build resilience against them.[94][95] Relevant research centers include the Cambridge Center for the Study of Existential Risk, and the Stanford Existential Risk Initiative.[96] Future technologies may contribute to the risks of artificial general intelligence, biological warfare, nuclear warfare, nanotechnology, anthropogenic climate change, global warming, or stable global totalitarianism, though technologies may also help us mitigate asteroid impacts and gamma-ray bursts.[97] In 2019 philosopher Nick Bostrom introduced the notion of a vulnerable world, «one in which there is some level of technological development at which civilization almost certainly gets devastated by default», citing the risks of a pandemic caused by bioterrorists, or an arms race triggered by the development of novel armaments and the loss of mutual assured destruction.[98] He invites policymakers to question the assumptions that technological progress is always beneficial, that scientific openness is always preferable, or that they can afford to wait until a dangerous technology has been invented before they prepare mitigations.[98]
Emerging technologies
Experimental 3D printing of muscle tissue
Emerging technologies are novel technologies whose development or practical applications are still largely unrealized. They include nanotechnology, biotechnology, robotics, 3D printing, blockchains, and artificial intelligence.
In 2005, futurist Ray Kurzweil claimed the next technological revolution would rest upon advances in genetics, nanotechnology, and robotics, with robotics being the most impactful of the three.[99] Genetic engineering will allow far greater control over human biological nature through a process called directed evolution. Some thinkers believe that this may shatter our sense of self, and have urged for renewed public debate exploring the issue more thoroughly;[100] others fear that directed evolution could lead to eugenics or extreme social inequality. Nanotechnology will grant us the ability to manipulate matter «at the molecular and atomic scale»,[101] which could allow us to reshape ourselves and our environment in fundamental ways.[102] Nanobots could be used within the human body to destroy cancer cells or form new body parts, blurring the line between biology and technology.[103] Autonomous robots have undergone rapid progress, and are expected to replace humans at many dangerous tasks, including search and rescue, bomb disposal, firefighting, and war.[104]
Estimates on the advent of artificial general intelligence vary, but half of machine learning experts surveyed in 2018 believe that AI will «accomplish every task better and more cheaply» than humans by 2063, and automate all human jobs by 2140.[105] This expected technological unemployment has led to calls for increased emphasis on computer science education and debates about UBI. Political science experts predict that this could lead to a rise in extremism, while others see it as an opportunity to usher in a post-scarcity economy.
Movements
Appropriate technology
Some segments of the 1960s hippie counterculture grew to dislike urban living and developed a preference for locally autonomous, sustainable, and decentralized technology, termed appropriate technology. This later influenced hacker culture and technopaganism.
Technological utopianism
Technological utopianism refers to the belief that technological development is a moral good, which can and should bring about a utopia, that is, a society in which laws, governments, and social conditions serve the needs of all its citizens.[106] Examples of techno-utopian goals include post-scarcity economics, life extension, mind uploading, cryonics, and the creation of artificial superintelligence. Major techno-utopian movements include transhumanism and singularitarianism.
The transhumanism movement is founded upon the «continued evolution of human life beyond its current human form» through science and technology, informed by «life-promoting principles and values.»[107] The movement gained wider popularity in the early 21st century.[108]
Singularitarians believe that machine superintelligence will «accelerate technological progress» by orders of magnitude and «create even more intelligent entities ever faster», which may lead to a pace of societal and technological change that is «incomprehensible» to us. This event horizon is known as the technological singularity.[109]
Major figures of techno-utopianism include Ray Kurzweil and Nick Bostrom. Techno-utopianism has attracted both praise and criticism from progressive, religious, and conservative thinkers.[110]
Anti-technology backlash
Technology’s central role in our lives has drawn concerns and backlash. The backlash against technology is not a uniform movement and encompasses many heterogeneous ideologies.[111]
The earliest known revolt against technology was Luddism, a pushback against early automation in textile production. Automation had resulted in a need for fewer workers, a process known as technological unemployment.
Between the 1970s and 1990s, American terrorist Ted Kaczynski carried out a series of bombings across America and published the Unabomber Manifesto denouncing technology’s negative impacts on nature and human freedom. The essay resonated with a large part of the American public.[112] It was partly inspired by Jacques Ellul’s The Technological Society.[113]
Some subcultures, like the off-the-grid movement, advocate a withdrawal from technology and a return to nature. The ecovillage movement seeks to reestablish harmony between technology and nature.[114]
Relation to science and engineering
Engineering is the process by which technology is developed. It often requires problem-solving under strict constraints.[115] Technological development is «action-oriented», while scientific knowledge is fundamentally explanatory.[116] Polish philosopher Henryk Skolimowski framed it like so: «science concerns itself with what is, technology with what is to be.»[117]: 375
The direction of causality between scientific discovery and technological innovation has been debated by scientists, philosophers and policymakers.[118] Because innovation is often undertaken at the edge of scientific knowledge, most technologies are not derived from scientific knowledge, but instead from engineering, tinkering and chance.[119]: 217–240 For example, in the 1940s and 1950s, when knowledge of turbulent combustion or fluid dynamics was still crude, jet engines were invented through «running the device to destruction, analyzing what broke […] and repeating the process».[115] Scientific explanations often follow technological developments rather than preceding them.[119]: 217–240 Many discoveries also arose from pure chance, like the discovery of penicillin as a result of accidental lab contamination.[120] Since the 1960s, the assumption that government funding of basic research would lead to the discovery of marketable technologies has lost credibility.[121][122] Probabilist Nassim Taleb argues that national research programs that implement the notions of serendipity and convexity through frequent trial and error are more likely to lead to useful innovations than research that aims to reach specific outcomes.[119][123]
Despite this, modern technology is increasingly reliant on deep, domain-specific scientific knowledge. In 1979, an average of one in three patents granted in the U.S. cited the scientific literature; by 1989, this increased to an average of one citation per patent. The average was skewed upwards by patents related to the pharmaceutical industry, chemistry, and electronics.[124] A 2021 analysis shows that patents that are based on scientific discoveries are on average 26% more valuable than equivalent non-science-based patents.[125]
Other animal species
The use of basic technology is also a feature of non-human animal species. Tool use was once considered a defining characteristic of the genus Homo.[126] This view was supplanted after discovering evidence of tool use among chimpanzees and other primates,[127] dolphins,[128] and crows.[129][130] For example, researchers have observed wild chimpanzees using basic foraging tools, pestles, levers, using leaves as sponges, and tree bark or vines as probes to fish termites.[131] West African chimpanzees use stone hammers and anvils for cracking nuts,[132] as do capuchin monkeys of Boa Vista, Brazil.[133] Tool use is not the only form of animal technology use; for example, beaver dams, built with wooden sticks or large stones, are a technology with «dramatic» impacts on river habitats and ecosystems.[134]
Popular culture
The relationship of humanity with technology has been explored in science-fiction literature, for example in Brave New World, A Clockwork Orange, Nineteen Eighty-Four, Isaac Asimov’s essays, and movies like Minority Report, Total Recall, Gattaca, and Inception. It has spawned the dystopian and futuristic cyberpunk genre, which juxtaposes futuristic technology with societal collapse, dystopia or decay.[135] Notable cyberpunk works include William Gibson’s Neuromancer novel, and movies like Blade Runner, and The Matrix.
See also
- Outline of technology
- History of technology
- Philosophy of technology
- Ethics of technology
- Criticism of technology
- Technology and society
- Productivity-improving technologies
- Technological singularity
- Futures studies
- Environmental technology
References
Citations
- ^ Skolnikoff, Eugene B. (1993). The Elusive Transformation: Science, Technology, and the Evolution of International Politics. Princeton University Press. p. 13. ISBN 978-0-691-03770-7. JSTOR j.ctt7rpm1.
- ^ a b c d Salomon, Jean‐Jacques (1 January 1984). «What is technology? The issue of its origins and definitions». History and Technology. 1 (2): 113–156. doi:10.1080/07341518408581618. ISSN 0734-1512. Archived from the original on 4 October 2022. Retrieved 10 September 2022.
- ^ Mitcham, C. (15 October 1994). Thinking Through Technology: The Path Between Engineering and Philosophy. University of Chicago Press. ISBN 978-0-226-53198-4.
- ^ Liddell, Henry George; Scott, Robert (1980). A Greek-English Lexicon (Abridged ed.). United Kingdom: Oxford University Press. ISBN 978-0-19-910207-5.
- ^ Simpson, J.; Weiner, Edmund, eds. (1989). «technology». The Oxford English Dictionary. Oxford University Press. ISBN 9780198611868.
- ^ Aristotle (11 June 2009). Brown, L. (ed.). The Nicomachean Ethics. Oxford World’s Classics. Translated by Ross, D. Oxford, New York: Oxford University Press. p. 105. ISBN 978-0-19-921361-0. Archived from the original on 4 October 2022. Retrieved 10 September 2022.
- ^ Schatzberg, Eric (2006). ««Technik» Comes to America: Changing Meanings of «Technology» before 1930″. Technology and Culture. 47 (3): 486–512. doi:10.1353/tech.2006.0201. ISSN 0040-165X. JSTOR 40061169. S2CID 143784033. Archived from the original on 10 September 2022. Retrieved 10 September 2022.
- ^ Schiffer, M. B. (2013). «Discovery Processes: Trial Models». The Archaeology of Science: Studying the Creation of Useful Knowledge. Manuals in Archaeological Method, Theory and Technique. Vol. 9. Heidelberg: Springer International Publishing. pp. 185–198. doi:10.1007/978-3-319-00077-0_13. ISBN 978-3-319-00077-0. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ The British Museum. «Our earliest technology?». smarthistory.org. Archived from the original on 2 September 2022. Retrieved 2 September 2022.
- ^ Minogue, K. (28 October 2010). «Stone Age Toolmakers Surprisingly Sophisticated». science.org. Archived from the original on 10 September 2022. Retrieved 10 September 2022.
- ^ Crump, Thomas (2001). A Brief History of Science. Constable & Robinson. p. 9. ISBN 978-1-84119-235-2.
- ^ Gowlett, J. A. J.; Wrangham, R. W. (1 March 2013). «Earliest fire in Africa: towards the convergence of archaeological evidence and the cooking hypothesis». Azania: Archaeological Research in Africa. 48 (1): 5–30. doi:10.1080/0067270X.2012.756754. ISSN 0067-270X. S2CID 163033909.
- ^ Stahl, Ann B. (1984). «Hominid dietary selection before fire». Current Anthropology. 25 (2): 151–68. doi:10.1086/203106. JSTOR 2742818. S2CID 84337150.
- ^ Wrangham, R. (1 August 2017). «Control of Fire in the Paleolithic: Evaluating the Cooking Hypothesis». Current Anthropology. 58 (S16): S303–S313. doi:10.1086/692113. ISSN 0011-3204. S2CID 148798286. Archived from the original on 10 September 2022. Retrieved 10 September 2022.
- ^ Dunbar, R. I. M.; Gamble, C.; Gowlett, J. A. J., eds. (6 February 2014). Lucy to Language: the Benchmark Papers. Oxford University Press. ISBN 978-0-19-965259-4. OCLC 1124046527. Archived from the original on 14 August 2020. Retrieved 10 September 2022.
- ^ Wade, Nicholas (15 July 2003). «Early Voices: The Leap to Language». The New York Times. Archived from the original on 12 March 2017. Retrieved 7 November 2016.
- ^ a b Shaar, Ron; Matmon, Ari; Horwitz, Liora K.; Ebert, Yael; Chazan, Michael; Arnold, M.; Aumaître, G.; Bourlès, D.; Keddadouche, K. (1 May 2021). «Magnetostratigraphy and cosmogenic dating of Wonderwerk Cave: New constraints for the chronology of the South African Earlier Stone Age». Quaternary Science Reviews. 259: 106907. Bibcode:2021QSRv..25906907S. doi:10.1016/j.quascirev.2021.106907. ISSN 0277-3791. S2CID 234833092.
- ^ Hallett, Emily Y.; Marean, Curtis W.; Steele, Teresa E.; Álvarez-Fernández, Esteban; Jacobs, Zenobia; Cerasoni, Jacopo Niccolò; Aldeias, Vera; Scerri, Eleanor M. L.; Olszewski, Deborah I.; Hajraoui, Mohamed Abdeljalil El; Dibble, Harold L. (24 September 2021). «A worked bone assemblage from 120,000–90,000 year old deposits at Contrebandiers Cave, Atlantic Coast, Morocco». iScience. 24 (9): 102988. Bibcode:2021iSci…24j2988H. doi:10.1016/j.isci.2021.102988. ISSN 2589-0042. PMC 8478944. PMID 34622180.
- ^ O’Neil, Dennis. «Evolution of Modern Humans: Archaic Homo sapiens Culture». Palomar College. Archived from the original on 4 April 2007. Retrieved 31 March 2007.
- ^ Villa, Paola (1983). Terra Amata and the Middle Pleistocene archaeological record of southern France. Berkeley: University of California Press. p. 303. ISBN 978-0-520-09662-2.
- ^ Cordaux, Richard; Stoneking, Mark (2003). «South Asia, the Andamanese, and the Genetic Evidence for an ‘Early’ Human Dispersal out of Africa» (PDF). American Journal of Human Genetics. 72 (6): 1586–90, author reply 1590–93. doi:10.1086/375407. PMC 1180321. PMID 12817589. Archived (PDF) from the original on 1 October 2009. Retrieved 22 May 2007.
- ^ «‘Oldest remains’ outside Africa reset human migration clock». phys.org. Archived from the original on 11 July 2019. Retrieved 10 September 2022.
- ^ Harvati, Katerina; Röding, Carolin; Bosman, Abel M.; Karakostis, Fotios A.; Grün, Rainer; Stringer, Chris; Karkanas, Panagiotis; Thompson, Nicholas C.; Koutoulidis, Vassilis; Moulopoulos, Lia A.; Gorgoulis, Vassilis G.; Kouloukoussa, Mirsini (2019). «Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia». Nature. Springer Science and Business Media LLC. 571 (7766): 500–504. doi:10.1038/s41586-019-1376-z. ISSN 0028-0836. PMID 31292546. S2CID 195873640. Archived from the original on 1 August 2022. Retrieved 17 September 2022.
- ^ Kuijt, i., ed. (2002). Life in Neolithic Farming Communities: Social Organization, Identity, and Differentiation. Fundamental Issues in Archaeology. Springer New York. ISBN 9780306471667. Archived from the original on 4 October 2022. Retrieved 13 September 2022.
- ^ Coghlan, H. H. (1943). «The Evolution of the Axe from Prehistoric to Roman Times». The Journal of the Royal Anthropological Institute of Great Britain and Ireland. 73 (1/2): 27–56. doi:10.2307/2844356. ISSN 0307-3114. JSTOR 2844356. Archived from the original on 26 September 2022. Retrieved 26 September 2022.
- ^ Driscoll, Killian (2006). The early prehistory in the west of Ireland: Investigations into the social archaeology of the Mesolithic, west of the Shannon, Ireland. Archived from the original on 4 September 2017. Retrieved 11 July 2017.
- ^ University of Chicago Press Journals (4 January 2006). «The First Baby Boom: Skeletal Evidence Shows Abrupt Worldwide Increase In Birth Rate During Neolithic Period». ScienceDaily. Archived from the original on 8 November 2016. Retrieved 7 November 2016.
- ^ Sussman, Robert W.; Hall, Roberta L. (April 1972). «Child Transport, Family Size, and Increase in Human Population During the Neolithic». Current Anthropology. 13 (2): 258–67. doi:10.1086/201274. JSTOR 2740977. S2CID 143449170.
- ^ Ferraro, Gary P. (2006). Cultural Anthropology: An Applied Perspective. The Thomson Corporation. ISBN 978-0-495-03039-3. Archived from the original on 31 March 2021. Retrieved 17 May 2008.
- ^ Patterson, Gordon M. (1992). The ESSENTIALS of Ancient History. Research & Education Association. ISBN 978-0-87891-704-4. Archived from the original on 31 March 2021. Retrieved 17 May 2008.
- ^ Cramb, Alan W (1964). «A Short History of Metals». Nature. 203 (4943): 337. Bibcode:1964Natur.203Q.337T. doi:10.1038/203337a0. S2CID 382712.
- ^ Hall, Harry Reginald Holland (1911). «Ceramics» . In Chisholm, Hugh (ed.). Encyclopædia Britannica. Vol. 05 (11th ed.). Cambridge University Press. pp. 703–760, see page 708.
The art of making a pottery consisting of a siliceous sandy body coated with a vitreous copper glaze seems to have been known unexpectedly early, possibly even as early as the period immediately preceding the Ist Dynasty (4000 B.C.).
- ^ Akanuma, Hideo. «The significance of the composition of excavated iron fragments taken from Stratum III at the site of Kaman-Kalehöyük, Turkey». Anatolian Archaeological Studies. Tokyo: Japanese Institute of Anatolian Archaeology. 14.
- ^ «Ironware piece unearthed from Turkey found to be oldest steel». The Hindu. 26 March 2009. Archived from the original on 29 March 2009. Retrieved 8 November 2016.
- ^ Usai, Donatella; Salvatori, Sandro. «The oldest representation of a Nile boat». Antiquity. 81.
- ^ Postel, Sandra (1999). «Egypt’s Nile Valley Basin Irrigation». Pillar of Sand: Can the Irrigation Miracle Last?. W. W. Norton & Company. ISBN 978-0-393-31937-8. Archived from the original on 19 November 2020. Retrieved 25 September 2022.
- ^ Crawford, Harriet (2013). The Sumerian World. New York City, New York and London, England: Routledge. pp. 34–43. ISBN 978-0-203-09660-4. Archived from the original on 5 December 2020. Retrieved 12 November 2020.
- ^ Potts, D.T. (2012). A Companion to the Archaeology of the Ancient Near East. p. 285.
- ^ Childe, V. Gordon (1928). New Light on the Most Ancient East. p. 110.
- ^ Anthony, David A. (2007). The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World. Princeton: Princeton University Press. p. 67. ISBN 978-0-691-05887-0.
- ^ Gasser, Aleksander (March 2003). «World’s Oldest Wheel Found in Slovenia». Republic of Slovenia Government Communication Office. Archived from the original on 26 August 2016. Retrieved 8 November 2016.
- ^ Kramer, Samuel Noah (1963). The Sumerians: Their History, Culture, and Character. Chicago, Illinois: University of Chicago Press. p. 290. ISBN 978-0-226-45238-8. Archived from the original on 8 August 2014. Retrieved 26 October 2017.
- ^ a b Moorey, Peter Roger Stuart (1999) [1994]. Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Winona Lake, Indiana: Eisenbrauns. p. 146. ISBN 978-1-57506-042-2. Archived from the original on 17 October 2017. Retrieved 26 October 2017.
- ^ a b Lay, M G (1992). Ways of the World. Sydney, Australia: Primavera Press. p. 28. ISBN 978-1-875368-05-1.
- ^ a b c d e f g Gregersen, Erik (2012). The Complete History of Wheeled Transportation: From Cars and Trucks to Buses and Bikes. New York City, New York: Britannica Educational Publishing. p. 130. ISBN 978-1-61530-701-2. Archived from the original on 31 March 2021. Retrieved 12 November 2020.
- ^ a b c d e f g Aicher, Peter J. (1995). Guide to the Aqueducts of Ancient Rome. Wauconda, Illinois: Bolchazy-Carducci Publishers, Inc. p. 6. ISBN 978-0-86516-282-2. Archived from the original on 5 December 2020. Retrieved 12 November 2020.
- ^ a b c Eslamian, Saeid (2014). Handbook of Engineering Hydrology: Environmental Hydrology and Water Management. Boca Raton, Florida: CRC Press. pp. 171–75. ISBN 978-1-4665-5250-0. Archived from the original on 10 December 2020. Retrieved 12 November 2020.
- ^ a b c d e Lechner, Norbert (2012). Plumbing, Electricity, Acoustics: Sustainable Design Methods for Architecture. Hoboken, New Jersey: John Wiley & Sons, Inc. p. 106. ISBN 978-1-118-01475-2. Archived from the original on 31 March 2021. Retrieved 12 November 2020.
- ^ Davids, K.; De Munck, B., eds. (12 December 2019). Innovation and Creativity in Late Medieval and Early Modern European Cities. Routledge. doi:10.4324/9781315588605. ISBN 978-1-317-11653-0. S2CID 148764971. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ Courtenay, W. J.; Miethke, J.; Priest, D. B., eds. (2000). Universities and Schooling in Medieval Society. BRILL. ISBN 978-90-04-11351-0. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ Deming, D. (10 January 2014). Science and Technology in World History, Volume 3: The Black Death, the Renaissance, the Reformation and the Scientific Revolution. McFarland. ISBN 978-0-7864-9086-8.
- ^ Stearns, P. N. (2020). The Industrial Revolution in World History. Routledge. ISBN 978-0-8133-4729-5.
- ^ Mokyr, J. (2000). «The Second Industrial Revolution, 1870–1914» (PDF). Archived (PDF) from the original on 10 September 2022. Retrieved 10 September 2022.
- ^ Black, B. C. (15 May 2022). To Have and Have Not: Energy in World History. Rowman & Littlefield. ISBN 978-1-5381-0504-7. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ Albion, Robert G. (1 January 1933). «The Communication Revolution, 1760-1933». Transactions of the Newcomen Society. 14 (1): 13–25. doi:10.1179/tns.1933.002. ISSN 0372-0187. Archived from the original on 4 October 2022. Retrieved 26 September 2022.
- ^ Agar, J. (9 April 2012). Science in the 20th Century and Beyond. Polity. ISBN 978-0-7456-3469-2. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ Goldin, C.; Katz, L. F. (30 March 2010). The Race between Education and Technology. Harvard University Press. ISBN 978-0-674-03773-1. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ Solow, Robert M. (1957). «Technical Change and the Aggregate Production Function». The Review of Economics and Statistics. 39 (3): 312–320. doi:10.2307/1926047. ISSN 0034-6535. JSTOR 1926047.
- ^ Bresnahan, Timothy F.; Trajtenberg, M. (1 January 1995). «General purpose technologies ‘Engines of growth’?». Journal of Econometrics. 65 (1): 83–108. doi:10.1016/0304-4076(94)01598-T. ISSN 0304-4076.
- ^ Wrigley, E. A (13 March 2013). «Energy and the English Industrial Revolution». Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 371 (1986): 20110568. Bibcode:2013RSPTA.37110568W. doi:10.1098/rsta.2011.0568. PMID 23359739. S2CID 10624423.
- ^ Persily, Nathaniel; Tucker, Joshua A., eds. (2020). Social Media and Democracy: The State of the Field, Prospects for Reform. SSRC Anxieties of Democracy. Cambridge: Cambridge University Press. doi:10.1017/9781108890960. ISBN 978-1-108-83555-8. S2CID 243715477.
- ^ Autor, D. H. (2015). «Why Are There Still So Many Jobs? The History and Future of Workplace». Journal of Economic Perspectives. 29 (3): 3–30. doi:10.1257/jep.29.3.3. Archived from the original on 1 September 2022.
- ^ Bessen, J. E. (3 October 2016). «How Computer Automation Affects Occupations: Technology, Jobs, and Skills». Rochester, NY. SSRN 2690435. Archived from the original on 4 October 2022. Retrieved 17 September 2022.
- ^ «Robots and Artificial Intelligence». igmchicago.org. Initiative on Global Markets. 30 June 2017. Archived from the original on 20 September 2022. Retrieved 17 September 2022.
- ^ «The Future of Jobs Report 2020» (PDF). www3.weforum.org. October 2020. Retrieved 16 January 2022.
- ^ «Robots and AI Taking Over Jobs: What to Know | Built In». builtin.com. Retrieved 16 January 2023.
- ^ «How many jobs do robots really replace?». MIT News | Massachusetts Institute of Technology. Retrieved 16 January 2023.
- ^ Acemoglu, Daron; Restrepo, Pascual (1 June 2020). «Robots and Jobs: Evidence from US Labor Markets». Journal of Political Economy. 128 (6): 2188–2244. doi:10.1086/705716. hdl:1721.1/130324. ISSN 0022-3808. S2CID 7468879.
- ^ «Remarks Upon Signing Bill Creating the National Commission on Technology, Automation, and Economic Progress. | The American Presidency Project». www.presidency.ucsb.edu. Retrieved 16 January 2023.
- ^ «Technology and the American Economy» (PDF). files.eric.ed.gov. February 1966. Retrieved 16 January 2023.
- ^ «If Robots Take Our Jobs, Will They Make It Up to Us?». The University of Chicago Booth School of Business. Retrieved 16 January 2023.
- ^ «GovInfo». www.govinfo.gov. Retrieved 16 January 2023.
- ^ «H.R.11611 — An Act to establish a National Commission on Technology, Automation, and Economic Progress». www.congress.gov. 1963. Retrieved 16 January 2023.
- ^ a b Rosenberg, Elizabeth; Harrell, Peter E.; Shiffman, Gary M.; Dorshimer, Sam (2019). «Financial Technology and National Security». Center for a New American Security.
- ^ «U.S. takes aim at North Korean crypto laundering». NBC News. Retrieved 19 January 2023.
- ^ «U.S. ties North Korean hacker group to Axie Infinity crypto theft». NBC News. Retrieved 19 January 2023.
- ^ Austin, David; Macauley, Molly K. (1 December 2001). «Cutting Through Environmental Issues: Technology as a double-edged sword». Brookings. Retrieved 10 February 2023.
{{cite web}}
: CS1 maint: url-status (link) - ^ Grainger, Alan; Francisco, Herminia A.; Tiraswat, Penporn (July 2003). «The impact of changes in agricultural technology on long-term trends in deforestation». The International Journal Covering All Aspects of Land Use. 20 (3): 209–223 – via Elsevier Science Direct.
- ^ Chaudhry, Imran Sharif; Ali, Sajid; Bhatti, Shaukat Hussain; Anser, Muhammad Khalid; Khan, Ahmad Imran; Nazar, Raima (October 2021). «Dynamic common correlated effects of technological innovations and institutional performance on environmental quality: Evidence from East-Asia and Pacific countries». Environmental Science & Policy. 124 (Environmental Science & Policy): 313–323. doi:10.1016/j.envsci.2021.07.007 – via Elsevier Science Direct.
- ^ Smol, J. P. (2009). Pollution of Lakes and Rivers : a Paleoenvironmental Perspective (2nd ed.). Chichester: John Wiley & Sons. p. 135. ISBN 978-1-4443-0757-3. OCLC 476272945.
- ^ a b Franssen, M.; Lokhorst, G.-J.; van de Poel, I. (2018). «Philosophy of Technology». In Zalta, E. N. (ed.). The Stanford Encyclopedia of Philosophy (Fall 2018 ed.). Archived from the original on 11 September 2022. Retrieved 11 September 2022.
- ^ a b de Vries, M. J.; Verkerk, M. J.; Hoogland, J.; van der Stoep, J. (2015). Philosophy of Technology : An Introduction for Technology and Business Students. United Kingdom: Taylor & Francis. ISBN 9781317445715. OCLC 907132694. Archived from the original on 4 October 2022. Retrieved 10 September 2022.
- ^ Brey, P. (2000). Mitcham, C. (ed.). «Theories of Technology as Extension of Human Faculties». Metaphysics, Epistemology, and Technology. Research in Philosophy and Technology. 19.
- ^ a b Johnson, Deborah G.; Wetmore, Jameson M. (24 August 2021). Technology and Society, second edition: Building Our Sociotechnical Future. MIT Press. ISBN 978-0-262-53996-8.
- ^ Dusek, Val (13 March 2006). Philosophy of Technology: An Introduction. Wiley. ISBN 978-1-4051-1162-1. Archived from the original on 4 October 2022. Retrieved 13 September 2022.
- ^ Postman, Neil (1993). Technopoly: The Surrender of Culture to Technology. New York: Vintage.
- ^ Marcuse, H. (14 January 2004). Technology, War and Fascism: Collected Papers of Herbert Marcuse, Volume 1. Routledge. ISBN 978-1-134-77466-1. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ Hansson, Sven Ove (8 March 2017). The Ethics of Technology: Methods and Approaches. Rowman & Littlefield. ISBN 978-1-78348-659-5. Archived from the original on 4 October 2022. Retrieved 13 September 2022.
- ^ Al-Rodhan, Nayef. «The Many Ethical Implications of Emerging Technologies». Scientific American. Archived from the original on 8 April 2017. Retrieved 13 December 2019.
- ^ Luppicini, R. (2008). «The emerging field of Technoethics». In Luppicini; R. Adell (eds.). Handbook of Research on Technoethics. Hershey: Idea Group Publishing.
- ^ Veruggio, Gianmarco (2011). «The Roboethics Roadmap». EURON Roboethics Atelier. Scuola di Robotica: 2. CiteSeerX 10.1.1.466.2810.
- ^ Anderson, Michael; Anderson, Susan Leigh, eds. (July 2011). Machine Ethics. Cambridge University Press. ISBN 978-0-521-11235-2.
- ^ a b c d e Bell, W. Foundations of Futures Studies, Volume 1: Human Science for a New Era. Transaction Publishers. ISBN 978-1-4128-2379-1. Archived from the original on 4 October 2022. Retrieved 12 September 2022.
- ^ «About us». cser.ac.uk. Archived from the original on 30 December 2017. Retrieved 11 September 2022.
- ^ Gottlieb, J. (1 May 2022). «Discounting, Buck-Passing, and Existential Risk Mitigation: The Case of Space Colonization». Space Policy. 60: 101486. Bibcode:2022SpPol..6001486G. doi:10.1016/j.spacepol.2022.101486. ISSN 0265-9646. S2CID 247718992.
- ^ «Stanford Existential Risks Initiative». cisac.fsi.stanford.edu. Archived from the original on 22 September 2022. Retrieved 4 October 2022.
- ^ Bostrom, Nick; Cirkovic, Milan M. (29 September 2011). Global Catastrophic Risks. OUP Oxford. ISBN 978-0-19-960650-4. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ a b Bostrom, Nick (6 September 2019). «The Vulnerable World Hypothesis». Global Policy. 10 (4): 455–476. doi:10.1111/1758-5899.12718. ISSN 1758-5880. S2CID 203169705.
- ^ Kurzweil, Ray (2005). «GNR: Three Overlapping Revolutions». The Singularity is Near. Penguin. ISBN 978-1-101-21888-4.
- ^ Kompridis, N. (2009). «Technology’s challenge to democracy: What of the human» (PDF). Parrhesia. 8 (1): 20–33. Archived (PDF) from the original on 4 October 2022. Retrieved 21 February 2011.
- ^ McShane, Sveta (19 April 2016). «Ray Kurzweil Predicts Three Technologies Will Define Our Future». Singularity Hub. Retrieved 10 May 2021.
- ^ Poole, C. P. Jr.; Owens, F. J. (30 May 2003). Introduction to Nanotechnology. John Wiley & Sons. ISBN 978-0-471-07935-4.
- ^ Vince, G. (3 July 2003). «Nanotechnology may create new organs». New Scientist. Archived from the original on 11 September 2022. Retrieved 11 September 2022.
- ^ Lee, Sukhan; Suh, Il Hong (14 January 2008). Recent Progress in Robotics: Viable Robotic Service to Human: An Edition of the Selected Papers from the 13th International Conference on Advanced Robotics. Springer Science & Business Media. p. 3. ISBN 978-3-540-76728-2. Archived from the original on 4 October 2022. Retrieved 13 September 2022.
- ^ Grace, K.; Salvatier, J.; Dafoe, A.; Zhang, B.; Evans, O. (31 July 2018). «Viewpoint: When Will AI Exceed Human Performance? Evidence from AI Experts». Journal of Artificial Intelligence Research. 62: 729–754. doi:10.1613/jair.1.11222. ISSN 1076-9757. S2CID 8746462. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ Segal, H. P. (7 November 2005). Technological Utopianism in American Culture: Twentieth Anniversary Edition. Syracuse University Press. ISBN 978-0-8156-3061-6. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ More, M.; Vita‐More, N., eds. (29 April 2013). «Roots and Core Themes». The Transhumanist Reader (1 ed.). Wiley. pp. 1–2. doi:10.1002/9781118555927.part1. ISBN 978-1-118-33429-4. Archived from the original on 11 September 2022. Retrieved 11 September 2022.
- ^ Istvan, Zoltan (1 February 2015). «A New Generation of Transhumanists Is Emerging». Interalia Magazine. Archived from the original on 11 September 2022. Retrieved 11 September 2022.
- ^ More, M.; Vita‐More, N., eds. (29 April 2013). «Future Trajectories: Singularity». The Transhumanist Reader (1 ed.). Wiley. pp. 361–363. doi:10.1002/9781118555927.part8. ISBN 978-1-118-33429-4. Archived from the original on 11 September 2022. Retrieved 11 September 2022.
- ^ Blackford, R.; Bostrom, N.; Dupuy, J.-P. (2011). H±: Transhumanism and Its Critics. Metanexus Institute. ISBN 978-1-4568-1565-3. Archived from the original on 4 October 2022. Retrieved 13 September 2022.
- ^ Jones, Steven E. (11 January 2013). Against Technology: From the Luddites to Neo-Luddism. Routledge. ISBN 978-1-135-52239-1. Archived from the original on 4 October 2022. Retrieved 11 September 2022.
- ^ Kelman, David (1 June 2020). «Politics in a Small Room: Subterranean Babel in Piglia’s El camino de Ida». The Yearbook of Comparative Literature. 63: 179–201. doi:10.3138/ycl.63.005. ISSN 0084-3695. S2CID 220494877. Archived from the original on 6 March 2022. Retrieved 11 September 2022.
- ^ Fleming, Sean (7 May 2021). «The Unabomber and the origins of anti-tech radicalism». Journal of Political Ideologies. 27 (2): 207–225. doi:10.1080/13569317.2021.1921940. ISSN 1356-9317.
- ^ Vannini, Phillip; Jonathan Taggart (2013). «Voluntary simplicity, involuntary complexities, and the pull of remove: The radical ruralities of off-grid lifestyles». Environment and Planning A. 45 (2): 295–311. doi:10.1068/a4564. S2CID 143970611.
- ^ a b Scranton, Philip (1 May 2006). «Urgency, uncertainty, and innovation: Building jet engines in postwar America». Management & Organizational History. 1 (2): 127–157. doi:10.1177/1744935906064096. ISSN 1744-9359. S2CID 143813033.
- ^ Di Nucci Pearce, M. R.; Pearce, David (1989). «Technology vs. Science: The Cognitive Fallacy». Synthese. 81 (3): 405–419. doi:10.1007/BF00869324. ISSN 0039-7857. JSTOR 20116729. S2CID 46975083. Archived from the original on 10 September 2022. Retrieved 12 September 2022.
- ^ Skolimowski, Henryk (1966). «The Structure of Thinking in Technology». Technology and Culture. 7 (3): 371–383. doi:10.2307/3101935. ISSN 0040-165X. JSTOR 3101935.
- ^ Brooks, H. (1 September 1994). «The relationship between science and technology». Research Policy. Special Issue in Honor of Nathan Rosenberg. 23 (5): 477–486. doi:10.1016/0048-7333(94)01001-3. ISSN 0048-7333. Archived from the original on 4 October 2022. Retrieved 13 September 2022.
- ^ a b c Taleb, Nassim Nicholas (2012). Antifragile. Penguin Random House. OCLC 1252833169.
- ^ Hare, Ronald (1970). The Birth of Penicillin, and the Disarming of Microbes. Allen & Unwin. ISBN 978-0-04-925005-5. Archived from the original on 4 October 2022. Retrieved 12 September 2022.
- ^ Wise, George (1985). «Science and Technology». Osiris. 2nd Series. 1: 229–46. doi:10.1086/368647. S2CID 144475553.
- ^ Guston, David H. (2000). Between Politics and Science: Assuring the Integrity and Productivity of Research. New York: Cambridge University Press. ISBN 978-0-521-65318-3.
- ^ Taleb, N. N. (12 December 2012). «Understanding is a Poor Substitute for Convexity (Antifragility)» (PDF). fooledbyrandomness.com. Archived (PDF) from the original on 21 June 2022. Retrieved 12 September 2022.
- ^ Narin, F.; Olivastro, D. (1 June 1992). «Status report: Linkage between technology and science». Research Policy. 21 (3): 237–249. doi:10.1016/0048-7333(92)90018-Y. ISSN 0048-7333. Archived from the original on 4 October 2022. Retrieved 13 September 2022.
- ^ Watzinger, M.; Schnitzer, M. (1 May 2019). «Standing on the Shoulders of Science» (PDF). SSRN 3401853. Archived (PDF) from the original on 12 September 2022. Retrieved 12 September 2022.
- ^ Oakley, K. P. (1976). Man the Tool-Maker. Nature. Vol. 199. pp. 1042–43. Bibcode:1963Natur.199U1042.. doi:10.1038/1991042e0. ISBN 978-0-226-61270-6. S2CID 4298952.
- ^ Sagan, Carl; Druyan, Ann; Leakey, Richard. «Chimpanzee Tool Use». Archived from the original on 21 September 2006. Retrieved 13 February 2007.
- ^ Rincon, Paul (7 June 2005). «Sponging dolphins learn from mum». BBC News. Archived from the original on 4 December 2016. Retrieved 11 November 2016.
- ^ Schmid, Randolph E. (4 October 2007). «Crows use tools to find food». NBC News. Archived from the original on 10 March 2017. Retrieved 11 November 2016.
- ^ Rutz, C.; Bluff, L.A.; Weir, A.A.S.; Kacelnik, A. (4 October 2007). «Video cameras on wild birds». Science. 318 (5851): 765. Bibcode:2007Sci…318..765R. doi:10.1126/science.1146788. PMID 17916693. S2CID 28785984.
- ^ McGrew, W. C (1992). Chimpanzee Material Culture. Cambridge u.a.: Cambridge Univ. Press. ISBN 978-0-521-42371-7.
- ^ Boesch, Christophe; Boesch, Hedwige (1984). «Mental map in wild chimpanzees: An analysis of hammer transports for nut cracking». Primates. 25 (2): 160–70. doi:10.1007/BF02382388. S2CID 24073884.
- ^ Brahic, Catherine (15 January 2009). «Nut-cracking monkeys find the right tool for the job». New Scientist. Archived from the original on 15 November 2016. Retrieved 11 November 2016.
- ^ Müller, G.; Watling, J. (24 June 2016). The engineering in beaver dams. River Flow 2016: Eighth International Conference on Fluvial Hydraulics. St. Louis, USA: University of Southampton Institutional Research Repository. Archived from the original on 24 September 2022. Retrieved 29 September 2022.
- ^ Thomas Michaud (2008). «Science fiction and politics: Cyberpunk science fiction as political philosophy». New Boundaries in Political Science Fiction. By Hassler, Donald M. University of South Carolina Press. pp. 65–77. ISBN 978-1-57003-736-8. See pp. 75–76.
Sources
- Baum, S. D. (1 May 2009). «Cost–benefit analysis of space exploration: Some ethical considerations». Space Policy. 25 (2): 75–80. Bibcode:2009SpPol..25…75B. doi:10.1016/j.spacepol.2009.02.008. ISSN 0265-9646. S2CID 5930045.
- Bernstein, Jared (7 October 2014). «It’s Not a Skills Gap That’s Holding Wages Down: It’s the Weak Economy, Among Other Things». The American Prospect. Retrieved 11 September 2022.
- Dietrich, O.; Notroff, J.; Schmidt, J. (2017). «Feasting, Social Complexity, and the Emergence of the Early Neolithic of Upper Mesopotamia: A View from Göbekli Tepe». In Chacon, R. J.; Mendoza, R. G. (eds.). Feast, Famine or Fighting? Multiple Pathways to Social Complexity. Cham: Springer International Publishing. pp. 91–132. doi:10.1007/978-3-319-48402-0_5. ISBN 978-3-319-48402-0. Retrieved 11 September 2022.
- Cohen, Benjamin; Ottinger, Gwen (2011). «Introduction: Environmental Justice and the Transformation of Science and Engineering». In Ottinger, Gwen; Cohen, Benjamin (eds.). Technoscience and Environmental Justice: Expert Cultures in a Grassroots Movement. MIT Press. pp. 1–18. ISBN 978-0-262-01579-0.
- Heidegger, Martin (1977). «The Question Concerning Technology». The Question Concerning Technology and Other Essays. Translated by Lovitt, W. New York: HarperCollins. pp. 25–26.
- Huesemann, M.H.; Huesemann, J.A. (2011). Technofix: Why Technology Won’t Save Us or the Environment. New Society Publishers. ISBN 978-0-86571-704-6.
- Kelly, K. (2010). What Technology Wants. New York: Viking Press. ISBN 978-0-670-02215-1.
- Kremer, M. (1993). «Population Growth and Technological Change: One Million B.C. to 1990». Quarterly Journal of Economics. 108 (3): 681–716. doi:10.2307/2118405. JSTOR 2118405. S2CID 139085606.
- Kuijt, I. (11 April 2006). Life in Neolithic Farming Communities: Social Organization, Identity, and Differentiation. Springer Science & Business Media. ISBN 978-0-306-47166-7.
- Morozov, Evgeny (2013). To Save Everything, Click Here: The Folly of Technological Solutionism. New York: PublicAffairs. ISBN 978-1-61039-139-9.
- Mumford, L. (2010). Technics and Civilization. University of Chicago Press. ISBN 978-0-226-55027-5.
- Ord, T. (24 March 2020). The Precipice: Existential Risk and the Future of Humanity. Hachette Books. ISBN 978-0-316-48489-3.
- Ottinger, Gwen (2011). «Rupturing Engineering Education: Opportunities for Transforming Expert Identities Through Community-Based Projects». In Ottinger, Gwen; Cohen, Benjamin (eds.). Technoscience and Environmental Justice: Expert Cultures in a Grassroots Movement. MIT Press. pp. 229–48. ISBN 978-0-262-01579-0.
- Rhodes, R. (2000). Visions of Technology: A Century of Vital Debate about Machines, Systems, and the Human World. Simon & Schuster. ISBN 0-684-86311-1.
- Schuurman, E. (1997). «Philosophical and Ethical Problems of Technicism and Genetic Engineering». Society for Philosophy and Technology. 3.
- Shaar, R.; Matmon, A.; Horwitz, L. K.; Ebert, Y.; Chazan, M.; Arnold, M.; Aumaître, G.; Bourlès, D.; Keddadouche, K. (1 May 2021). «Magnetostratigraphy and cosmogenic dating of Wonderwerk Cave: New constraints for the chronology of the South African Earlier Stone Age». Quaternary Science Reviews. 259: 106907. Bibcode:2021QSRv..25906907S. doi:10.1016/j.quascirev.2021.106907. ISSN 0277-3791. S2CID 234833092.
- Sharma, M. R. (2020). A Treatise on Science Technology and Society. ISBN 978-81-318-0667-8. Archived from the original on 17 April 2021. Retrieved 19 June 2020.
- Teich, A.H. (2008). Technology and the Future (11th ed.). Wadsworth Publishing. ISBN 978-0-495-57052-3.
- Tooze, A. (6 June 2019). «Democracy and Its Discontents». The New York Review of Books. Vol. LXVI, no. 10. pp. 52–53, 56–57.
- Turchin, A. (2018). «Approaches to the Prevention of Global Catastrophic Risks». Human Prospect. 7 (2): 52–65.
- Wilson, G. (1855). What is technology?: an inaugural lecture delivered in the University of Edinburgh on November 7, 1855 (1st ed.). Edinburgh: Sutherland and Knox. Wikidata Q26221492.
- Wright, R.T. (2008). Technology (5th ed.). Goodheart-Wilcox Company. ISBN 978-1-59070-718-0.
- Top Definitions
- Quiz
- Related Content
- Examples
- British
- Scientific
This shows grade level based on the word’s complexity.
[ tek-nol—uh-jee ]
/ tɛkˈnɒl ə dʒi /
This shows grade level based on the word’s complexity.
noun, plural tech·nol·o·gies for 4.
the branch of knowledge that deals with the creation and use of technical means and their interrelation with life, society, and the environment, drawing upon such subjects as industrial arts, engineering, applied science, and pure science.
the application of this knowledge for practical ends.
the terminology of an art, science, etc.; technical nomenclature.
a scientific or industrial process, invention, method, or the like.
the sum of the ways in which social groups provide themselves with the material objects of their civilization.
QUIZ
CAN YOU ANSWER THESE COMMON GRAMMAR DEBATES?
There are grammar debates that never die; and the ones highlighted in the questions in this quiz are sure to rile everyone up once again. Do you know how to answer the questions that cause some of the greatest grammar debates?
Which sentence is correct?
Origin of technology
First recorded in 1605–15, technology is from the Greek word technología systematic treatment. See techno-, -logy
OTHER WORDS FROM technology
an·ti·tech·nol·o·gy, nounsu·per·tech·nol·o·gy, noun, plural su·per·tech·nol·o·gies.
Words nearby technology
technol., technological, technological unemployment, technologist, technologize, technology, technology agreement, technophile, technophobe, technophobia, technopop
Dictionary.com Unabridged
Based on the Random House Unabridged Dictionary, © Random House, Inc. 2023
Words related to technology
How to use technology in a sentence
-
The company completed a proof-of-concept demonstration of their technology on a Caterpillar engine at Argonne National Laboratory.
-
The dance-video company—this is how you know it’s important—already has a technology partner.
-
While it’s always been great as a quick-and-easy way to increase page speed, the privacy concerns have been voiced over and over again since the technology’s very inception.
-
Unfortunately, the pandemic is creating an opportunity for this technology.
-
The next administration should recommit to Mission Innovation and spearhead international efforts to bring new technologies to market.
-
Complete male reproductive independence would also hinge on artificial womb technology, which also made headlines in 2014.
-
In the absence of cultural shifts, then, new reproductive technology might not matter as much for women as it would for men.
-
Adam Thierer is a senior research fellow with the Technology Policy Program at the Mercatus Center at George Mason University.
-
A step-by-step plan to break from your various technology addictions.
-
The technology exists to keep us from ever losing a commercial airliner over open seas ever again.
-
He saw my look and said, «Oops, I mean this milestone in paper technology once it is announced to the world.»
-
A college is not designed to train and discipline the mind, but to utilize science, and become a school of technology.
-
In many processes of chemical technology filtration plays an important part.
-
Specialists in science and technology, the peers of those abroad, are plentiful on every hand.
-
He is presently engaged in a project that deals with the applications of nuclear technology to art identification.
British Dictionary definitions for technology
noun plural -gies
the application of practical sciences to industry or commerce
the methods, theory, and practices governing such applicationa highly developed technology
the total knowledge and skills available to any human society for industry, art, science, etc
Derived forms of technology
technological (ˌtɛknəˈlɒdʒɪkəl), adjectivetechnologically, adverbtechnologist, noun
Word Origin for technology
C17: from Greek tekhnologia systematic treatment, from tekhnē art, skill
Collins English Dictionary — Complete & Unabridged 2012 Digital Edition
© William Collins Sons & Co. Ltd. 1979, 1986 © HarperCollins
Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009, 2012
Scientific definitions for technology
The use of scientific knowledge to solve practical problems, especially in industry and commerce.
The specific methods, materials, and devices used to solve practical problems.
The American Heritage® Science Dictionary
Copyright © 2011. Published by Houghton Mifflin Harcourt Publishing Company. All rights reserved.
By the mid-twentieth century, humans had achieved a mastery of technology sufficient to leave the surface of the Earth for the first time and explore space.
Technology is a broad concept that deals with a species’ usage and knowledge of tools and crafts, and how it affects a species’ ability to control and adapt to its environment. In human society, it is a consequence of science and engineering, although several technological advances predate the two concepts. A strict definition of «technology» is elusive: It can refer to material objects of use to humanity, such as machines, hardware or utensils, but can also encompass broader themes, including systems, methods of organization, and techniques. The term can either be applied generally or to specific areas: examples include «construction technology,» «medical technology,» or «state-of-the-art technology.»
Technology has affected society and its surroundings in a number of ways. In many societies, technology has helped develop more advanced economies (including today’s global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products, known as pollution, and deplete natural resources, to the detriment of the Earth and its environment. Various implementations of technology influence the values of a society and new technology often raises new ethical questions. Examples include the rise of the notion of efficiency in terms of human productivity, a term originally applied only to machines, and the challenge of traditional norms.
Definition and usage
Technology has its origins in the Greek «technologia,» «τεχνολογία«—»techne,» «τέχνη» («craft») and «logia,» «λογία» («saying»).[1] In general, technology is the relationship that society has with its tools and crafts, and to what extent society can control its environment. The Merriam-Webster dictionary offers a definition of the term: «the practical application of knowledge especially in a particular area» and «a capability given by the practical application of knowledge».[2]
Ursula Franklin, in her 1989 «Real World of Technology» lecture, gave another definition of the concept; it is «practice, the way we do things around here».[3] The term is often used to imply a specific field of technology, or to refer to high technology or just consumer electronics, rather than technology as a whole. Bernard Stiegler, in Technics and Time, 1, defines technology in two ways: as «the pursuit of life by means other than life,» and as «organized inorganic matter.»[4]
Technology can be most broadly defined as the entities, both material and immaterial, created by the application of mental and physical effort in order to achieve some value. In this usage, technology refers to tools and machines that may be used to solve real-world problems. It is a far-reaching term that may include simple tools, such as a crowbar or wooden spoon, or more complex machines, such as a space station or particle accelerator. Tools and machines need not be material; virtual technology, such as computer software and business methods, fall under this definition of technology.
The word «technology» can also be used to refer to a collection of techniques. In this context, it is the current state of humanity’s knowledge of how to combine resources to produce desired products, to solve problems, fulfill needs, or satisfy wants; it includes technical methods, skills, processes, techniques, tools and raw materials. When combined with another term, such as «medical technology» or «space technology,» it refers to the state of the respective field’s knowledge and tools. «State-of-the-art technology» refers to the high technology available to humanity in any field.
Technology can be viewed as an activity that forms or changes culture. Additionally, technology is the application of math, science, and the arts for the benefit of life as it is known. A modern example is the rise of communication technology, which has lessened barriers to human interaction and, as a result, has helped spawn new subcultures; the rise of cyberculture has, at its basis, the development of the Internet and the computer. Not all technology enhances culture in a creative way; technology can also help facilitate political oppression and war via tools such as guns. As a cultural activity, technology predates both science and engineering, each of which formalize some aspects of technological endeavor.
Science, engineering and technology
The distinction between science, engineering, and technology is not always clear. Science is the reasoned investigation or study of phenomena, aimed at discovering enduring principles among elements of the phenomenal world by employing formal techniques such as the scientific method. Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability and safety.
Engineering is the goal-oriented process of designing and making tools and systems to exploit natural phenomena for practical human means, often (but not always) using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result.
Technology is often a consequence of science and engineering — although technology as a human activity precedes the two fields. For example, science might study the flow of electrons in electrical conductors, by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines, such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists.
Role in human history
The human race’s use of technology began with the conversion of natural resources into simple tools. The prehistorical discovery of the ability to control fire increased the available sources of food and the invention of the wheel helped humans in traveling in and controlling their environment. Recent technological developments, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact on a global scale. However, not all technology has been used for peaceful purposes; the development of weapons of ever-increasing destructive power has progressed throughout history, from clubs to nuclear weapons.
Paleolithic (2.5 million – 10,000 B.C.E.)
The use of tools by early humans was partly a process of discovery, partly of evolution. Early humans evolved from a race of foraging hominids which were already bipedal, with a smaller brain than that of modern humans.[5] Tool use remained relatively unchanged for most of early human history, but approximately 50,000 years ago, a complex set of behaviors and tool use emerged, believed by many archaeologists to be connected to the emergence of fully-modern language.[6]
Stone tools
Hand axes from the Acheulian period
A Clovis point, made via pressure flaking
Human ancestors have been using stone and other tools since long before the emergence of Homo sapiens approximately 200,000 years ago. The earliest methods of stone tool making, known as the Oldowan «industry,» date back to at least 2.3 million years ago,[7] with the earliest direct evidence of tool usage found in Ethiopia within the Great Rift Valley, dating back to 2.5 million years ago.[8] This era of stone tool use is called the Paleolithic, or «Old stone age,» and spans all of human history up to the development of agriculture approximately 12,000 years ago.
To make a stone tool, a «core» of hard stone with specific flaking properties (such as flint) was struck with a hammerstone. This flaking produced a sharp edge on the core stone as well as on the flakes, either of which could be used as tools, primarily in the form of choppers or scrapers. These tools greatly aided the early humans in their hunter-gatherer lifestyle to perform a variety of tasks including butchering carcasses (and breaking bones to get at the marrow); chopping wood; cracking open nuts; skinning an animal for its hide; and even forming other tools out of softer materials such as bone and wood.[9]
The earliest stone tools were crude, being little more than a fractured rock. In the Acheulian era, beginning approximately 1.65 million years ago, methods of working these stone into specific shapes, such as hand axes emerged. The Middle Paleolithic, approximately 300,000 years ago, saw the introduction of the prepared-core technique, where multiple blades could be rapidly formed from a single core stone. The Upper Paleolithic, beginning approximately 40,000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely.[10]
Fire
The discovery and utilization of fire, a simple energy source with many profound uses, was a turning point in the technological evolution of humankind.[11] The exact date of its discovery is not known; evidence of burnt animal bones at the Cradle of Humankind suggests that the domestication of fire occurred before 1,000,000 B.C.E.;[12] scholarly consensus indicates that Homo erectus had controlled fire by between 500,000 B.C.E. and 400,000 B.C.E.[13] Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten.
Clothing and shelter
Other technological advances made during the Paleolithic era were clothing and shelter; the adoption of both technologies cannot be dated exactly, but they were a key to humanity’s progress. As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380,000 B.C.E., humans were constructing temporary wood huts.[14] Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa by 200,000 B.C.E. and into other continents, such as Eurasia.[15]
Humans began to work bones, antler, and hides, as evidenced by burins and racloirs produced during this period.
Neolithic through Classical Antiquity (10,000 B.C.E. – 300 C.E.)
An array of Neolithic artifacts, including bracelets, axe heads, chisels, and polishing tools.
Man’s technological ascent began in earnest in what is known as the Neolithic period («New stone age»). The invention of polished stone axes was a major advance because it allowed forest clearance on a large scale to create farms. The discovery of agriculture allowed for the feeding of larger populations, and the transition to a sedentist lifestyle increased the number of children that could be simultaneously raised, as young children no longer needed to be carried, as was the case with the nomadic lifestyle. Additionally, children could contribute labor to the raising of crops more readily than they could to the hunter-gatherer lifestyle.[16]
With this increase in population and availability of labor came an increase in labor specialization.[17] What triggered the progression from early Neolithic villages to the first cities, such as Uruk, and the first civilizations, such as Sumer, is not specifically known; however, the emergence of increasingly hierarchical social structures, the specialization of labor, trade and war amongst adjacent cultures, and the need for collective action to overcome environmental challenges, such as the building of dikes and reservoirs, are all thought to have played a role.[18]
Metal tools
Continuing improvements led to the furnace and bellows and provided the ability to smelt and forge native metals (naturally occurring in relatively pure form). Gold, copper, silver, and lead, were such early metals. The advantages of copper tools over stone, bone, and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 8000 B.C.E.). Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4000 B.C.E.). The first uses of iron alloys such as steel dates to around 1400 B.C.E.
Energy and Transport
Meanwhile, humans were learning to harness other forms of energy. The earliest known use of wind power is the sailboat. The earliest record of a ship under sail is shown on an Egyptian pot dating back to 3200 B.C.E. From prehistoric times, Egyptians probably used «the power of the Nile» annual floods to irrigate their lands, gradually learning to regulate much of it through purposely-built irrigation channels and ‘catch’ basins. Similarly, the early peoples of Mesopotamia, the Sumerians, learned to use the Tigris and Euphrates rivers for much the same purposes. But more extensive use of wind and water (and even human) power required another invention.
The wheel was invented in circa 4000 B.C.E.
According to archaeologists, the wheel was invented around 4000 B.C.E. The wheel was likely independently invented in Mesopotamia (in present-day Iraq) as well. Estimates on when this may have occurred range from 5500 to 3000 B.C.E., with most experts putting it closer to 4000 B.C.E. The oldest artifacts with drawings that depict wheeled carts date from about 3000 B.C.E.; however, the wheel may have been in use for millennia before these drawings were made. There is also evidence from the same period of time that wheels were used for the production of pottery. (Note that the original potter’s wheel was probably not a wheel, but rather an irregularly shaped slab of flat wood with a small hollowed or pierced area near the center and mounted on a peg driven into the earth. It would have been rotated by repeated tugs by the potter or his assistant.) More recently, the oldest-known wooden wheel in the world was found in the Ljubljana marshes of Slovenia.[19]
The invention of the wheel revolutionized activities as disparate as transportation, war, and the production of pottery (for which it may have been first used). It didn’t take long to discover that wheeled wagons could be used to carry heavy loads and fast (rotary) potters’ wheels enabled early mass production of pottery. But it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources.
Modern history (0C.E.—)
Tools include both simple machines (such as the lever, the screw, and the pulley), and more complex machines (such as the clock, the engine, the electric generator and the electric motor, the computer, radio, and the Space Station, among many others). As tools increase in complexity, so does the type of knowledge needed to support them. Complex modern machines require libraries of written technical manuals of collected information that has continually increased and improved—their designers, builders, maintainers, and users often require the mastery of decades of sophisticated general and specific training. Moreover, these tools have become so complex that a comprehensive infrastructure of technical knowledge-based lesser tools, processes and practices (complex tools in themselves) exist to support them, including engineering, medicine, and computer science. Complex manufacturing and construction techniques and organizations are needed to construct and maintain them. Entire industries have arisen to support and develop succeeding generations of increasingly more complex tools.
The relationship of technology with society (culture) is generally characterized as synergistic, symbiotic, co-dependent, co-influential, and co-producing, i.e. technology and society depend heavily one upon the other (technology upon culture, and culture upon technology). It is also generally believed that this synergistic relationship first occurred at the dawn of humankind with the invention of simple tools, and continues with modern technologies today. Today and throughout history, technology influences and is influenced by such societal issues/factors as economics, values, ethics, institutions, groups, the environment, government, among others.
The discipline studying the impacts of science, technology, and society and vice versa is called Science and technology in society.
Technology, philosophy, and society
Philosophical debates have arisen over the present and future use of technology in society, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar movements criticize the pervasiveness of technology in the modern world, claiming that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition. Indeed, until recently, it was believed that the development of technology was restricted only to human beings, but recent scientific studies indicate that other primates and certain dolphin communities have developed simple tools and learned to pass their knowledge to other generations.
Technicism
Generally, technicism is an over reliance or overconfidence in technology as a benefactor of society.
Taken to extreme, some argue that technicism is the belief that humanity will ultimately be able to control the entirety of existence using technology. In other words, human beings will someday be able to master all problems and possibly even control the future using technology. Some, such as Monsma, connect these ideas to the abdication of religion as a higher moral authority.[20]
More commonly, technicism is a criticism of the commonly held belief that newer, more recently-developed technology is «better.» For example, more recently-developed computers are faster than older computers, and more recently-developed cars have greater gas efficiency and more features than older cars. Because current technologies are generally accepted as good, future technological developments are not considered circumspectly, resulting in what seems to be a blind acceptance of technological development.
Optimism
Optimistic assumptions are made by proponents of ideologies such as transhumanism and singularitarianism, which view technological development as generally having beneficial effects for the society and the human condition. In these ideologies, technological development is morally good. Some critics see these ideologies as examples of scientism and techno-utopianism and fear the notion of human enhancement and technological singularity which they support. Some have described Karl Marx as a techno-optimist.[21]
Pessimism
On the somewhat pessimistic side are certain philosophers like the Herbert Marcuse and John Zerzan, who believe that technological societies are inherently flawed a priori. They suggest that the result of such a society is to become evermore technological at the cost of freedom and psychological health (and probably physical health in general, as pollution from technological products is dispersed).
Many, such as the Luddites and prominent philosopher Martin Heidegger, hold serious reservations, although not a priori flawed reservations, about technology. Heidegger presents such a view in «The Question Concerning Technology»: «Thus we shall never experience our relationship to the essence of technology so long as we merely conceive and push forward the technological, put up with it, or evade it. Everywhere we remain unfree and chained to technology, whether we passionately affirm or deny it.»[22]
Some of the most poignant criticisms of technology are found in what are now considered to be dystopian literary classics, for example Aldous Huxley’s Brave New World and other writings, Anthony Burgess’s A Clockwork Orange, and George Orwell’s Nineteen Eighty-Four. And, in Faust by Goethe, Faust’s selling his soul to the devil in return for power over the physical world, is also often interpreted as a metaphor for the adoption of industrial technology.
An overtly anti-technological treatise is Industrial Society and Its Future, written by Theodore Kaczynski (aka The Unabomber) and printed in several major newspapers (and later books) as part of an effort to end his bombing campaign of the techno-industrial infrastructure.
Appropriate technology
The notion of appropriate technology, however, was developed in the twentieth century (e.g., see the work of Jacques Ellul) to describe situations where it was not desirable to use very new technologies or those that required access to some centralized infrastructure or parts or skills imported from elsewhere. The eco-village movement emerged in part due to this concern.
Other species
This adult gorilla uses a branch as a walking stick to gauge the water’s depth; an example of technology usage by primates.
The use of basic technology is also a feature of other species apart from humans. These include primates such as chimpanzees, some dolphin communities,[23] and crows.[24]
The ability to make and use tools was once considered a defining characteristic of the genus Homo.[25] However, the discovery of tool construction among chimpanzees and related primates has discarded the notion of the use of technology as unique to humans. For example, researchers have observed wild chimpanzees utilizing tools for foraging: some of the tools used include leaf sponges, termite fishing probes, pestles and levers.[26] West African chimpanzees also use stone hammers and anvils for cracking nuts.
Notes
- ↑ technology (n.) Etymonline. Retrieved November 13, 2022.
- ↑ technology Merriam Webster. Retrieved November 13, 2022.
- ↑ Ursula M. Franklin, The Real World of Technology (House of Anansi Press, 1999, ISBN 978-0887846366).
- ↑ Bernard Stiegler, Technics and Time, 1: The Fault of Epimetheus (Stanford, CA: Stanford University Press, 1998, ISBN 978-0804730419), 17, 82.
- ↑ Mother of man — 3.2 million years ago BBC. Retrieved November 14, 2022.
- ↑ Nicholas Wade, Early Voices: The Leap to Language The New York Times, July 15, 2003. Retrieved November 14, 2022.
- ↑ Ancient ‘tool factory’ uncovered BBC News, May 6, 1999. Retrieved November 14, 2022.
- ↑ Jean de Heinzelin et al., Environment and Behavior of 2.5-Million-Year-Old Bouri Hominids Science 284(5414) (1999):625–629. Retrieved November 14, 2022.
- ↑ Thomas Plummer, Flaked Stones and Old Bones: Biological and Cultural Evolution at the Dawn of Technology Yearbook of Physical Anthropology 125(S39) (2004): 118-164. Retrieved November 14, 2022.
- ↑ William A. Haviland, Cultural Anthropology: The Human Challenge (Belmont, CA: Thomson Wadsworth. 2004, ISBN 0534624871), 77.
- ↑ Thomas Crump, A Brief History of Science. (London, UK: Constable, 2001, ISBN 184119235X), 9.
- ↑ Fossil Hominid Sites of South Africa UNESCO. Retrieved November 14, 2022.
- ↑ Stone Age Man: The use of tools History World. Retrieved November 14, 2022.
- ↑ Paola Villa, Terra Amata and the Middle Pleistocene Archaeological Record of Southern France (Berkeley, CA: University of California Press, 1983, ISBN 0520096622), 303.
- ↑ Richard Cordaux and Mark Stoneking, 2003. South Asia, the Andamanese and the genetic evidence for an «early» human dispersal out of Africa. American Journal of Human Genetics 72(6) (2003): 1586–1590. Retrieved November 14, 2022.
- ↑ The First Baby Boom: Skeletal Evidence Shows Abrupt Worldwide Increase In Birth Rate During Neolithic Period Science Daily, January 4, 2006. Retrieved November 14, 2022.
- ↑ Gary Ferraro,Cultural Anthropology: An Applied Perspective (Belmont, CA: Thomson Higher Education, 2006, ISBN 0495030392).
- ↑ Gordon M. Patterson, The Essentials of Ancient History (Piscataway, NJ: Research and Education Association, 1995, ISBN 9780878917044).
- ↑ Slovenian Marsh Yields World’s Oldest Wheel Ameriška Domovina, March 27, 2003. Retrieved November 14, 2022.
- ↑ Stephen V. Monsma, Responsible Technology: A Christian perspective (Grand Rapids, MI: W.B. Eerdmans Pub. Co., 1986, ISBN 9780802801753).
- ↑ James Hughes,Democratic Transhumanism 2.0. Retrieved November 14, 2022.
- ↑ Martin Heideiger, The Question Concerning Technology and Other Essays (New York, NY: Harper & Row. ISBN 9780061319693), 3–35.
- ↑ Paul Rincon, Sponging dolphins learn from mum. BBC News, June 7, 2005. Retrieved November 14, 2022.
- ↑ Randolph E. Schmid, Crows use tools to find food. NBC News, October 4, 2007. Retrieved November 14, 2022.
- ↑ K.P. Oakley, Man the Tool-Maker (Chicago, IL: University of Chicago Press, 1976, ISBN 9780226612706).
- ↑ W.C. McGrew, Chimpanzee Material Culture (Cambridge, UK; New York, NY: Cambridge University Press, 1992, ISBN 9780521423717).
References
ISBN links support NWE through referral fees
- Crump, Thomas. A Brief History of Science. London, UK: Constable, 2001. ISBN 184119235X
- Ferraro, Gary. Cultural Anthropology: An Applied Perspective. Belmont, CA: Thomson Higher Education, 2006. ISBN 0495030392
- Franklin, Ursula M. The Real World of Technology. House of Anansi Press, 1999. ISBN 978-0887846366
- Gere, Charlie. Art, Time and Technology: Histories of the Disappearing Body. Oxford, UK; New York, NY: Berg, 2005. ISBN 9781845201357
- Haviland, William A. Cultural Anthropology: The Human Challenge. Belmont, CA: Thomson Wadsworth, 2004. ISBN 0534624871
- Heideiger, Martin. The Question Concerning Technology and Other Essays. New York, NY: Harper & Row, 1977. ISBN 9780061319693
- McGrew, W.C. Chimpanzee Material Culture. Cambridge, UK; New York, NY: Cambridge University Press, 1992. ISBN 9780521423717
- Monsma, Stephen V. Responsible Technology: A Christian perspective. Grand Rapids, MI: W.B. Eerdmans Pub. Co., 1986. ISBN 9780802801753
- Oakley, K.P. Man the Tool-Maker. Chicago, IL: University of Chicago Press, 1976. ISBN 9780226612706
- Patterson, Gordon M. The Essentials of Ancient History. Piscataway, NJ: Research and Education Association, 1995. ISBN 9780878917044
- Popper, Popper. From Technological to Virtual Art. Cambridge, MA: MIT Press, 2007. ISBN 9780262162302
- Stiegler, Bernard. Technics and Time, 1: The Fault of Epimetheus. Stanford, CA: Stanford University Press, 1998. ISBN 978-0804730419
- Villa, Paola. Terra Amata and the Middle Pleistocene Archaeological Record of Southern France. Berkeley, CA: University of California Press, 1983. ISBN 0520096622
Major fields of Technology | |
---|---|
Applied science |
Artificial intelligence · Ceramic engineering · Computing technology · Electronics · Energy · Energy storage · Engineering physics · Environmental technology · Fisheries science · Materials science and engineering · Microtechnology · Nanotechnology · Nuclear technology · Optics · Zoography |
Information |
Communication · Graphics · Music technology · Speech recognition · Visual technology |
Industry |
Construction · Financial engineering · Manufacturing · Machinery · Mining · Business informatics |
Military |
Ammunition · Bombs · Guns · Military technology and equipment · Naval engineering |
Domestic |
Educational technology · Domestic appliances · Domestic technology · Food technology |
Engineering |
Aerospace · Agricultural · Architectural · Audio · Automotive · Biological · Biochemical · Biomedical · Broadcast · Building officials · Ceramic · Chemical · Civil · Computer · Construction · Cryogenic · Electrical · Electronic · Environmental · Food · Industrial · Materials · Mechanical · Mechatronics · Metallurgical · Mining · Naval · Network · Nuclear · Optical · Petroleum · Radio Frequency · Software · Structural · Systems · Technician · Textile · Tissue · Transport |
Health and safety |
Biomedical engineering · Bioinformatics · Biotechnology · Cheminformatics · Fire protection engineering · Health technologies · Nutrition · Pharmaceuticals · Safety engineering · Sanitary engineering |
Transport |
Aerospace · Aerospace engineering · Automotive engineering · Marine engineering · Motor vehicles · Space technology |
Credits
New World Encyclopedia writers and editors rewrote and completed the Wikipedia article
in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:
- Technology history
The history of this article since it was imported to New World Encyclopedia:
- History of «Technology»
Note: Some restrictions may apply to use of individual images which are separately licensed.
Educalingo cookies are used to personalize ads and get web traffic statistics. We also share information about the use of the site with our social media, advertising and analytics partners.
Download the app
educalingo
We are finally entering an exciting time in medicine where we have the technology to custom-tailor treatment and preventive protocols just as we’d custom-tailor a suit or designer gown to one’s individual body. But it all begins with you. You have to know yourself in a manner that you’ve probably never done before.
David Agus
ETYMOLOGY OF THE WORD TECHNOLOGY
From Greek tekhnologia systematic treatment, from tekhnē art, skill.
Etymology is the study of the origin of words and their changes in structure and significance.
PRONUNCIATION OF TECHNOLOGY
GRAMMATICAL CATEGORY OF TECHNOLOGY
Technology is a noun.
A noun is a type of word the meaning of which determines reality. Nouns provide the names for all things: people, objects, sensations, feelings, etc.
WHAT DOES TECHNOLOGY MEAN IN ENGLISH?
Technology
Technology is the making, modification, usage, and knowledge of tools, machines, techniques, crafts, systems, and methods of organization, in order to solve a problem, improve a pre-existing solution to a problem, achieve a goal, handle an applied input/output relation or perform a specific function. It can also refer to the collection of such tools, including machinery, modifications, arrangements and procedures. Technologies significantly affect human as well as other animal species’ ability to control and adapt to their natural environments. The term can either be applied generally or to specific areas: examples include construction technology, medical technology, and information technology. The human species’ use of technology began with the conversion of natural resources into simple tools. The prehistorical discovery of the ability to control fire increased the available sources of food and the invention of the wheel helped humans in travelling in and controlling their environment.
Definition of technology in the English dictionary
The first definition of technology in the dictionary is the application of practical sciences to industry or commerce. Other definition of technology is the methods, theory, and practices governing such application. Technology is also the total knowledge and skills available to any human society for industry, art, science, etc.
WORDS THAT RHYME WITH TECHNOLOGY
ˌnjʊərəʊˌɛndəʊkrɪˈnɒlədʒɪ
Synonyms and antonyms of technology in the English dictionary of synonyms
Translation of «technology» into 25 languages
TRANSLATION OF TECHNOLOGY
Find out the translation of technology to 25 languages with our English multilingual translator.
The translations of technology from English to other languages presented in this section have been obtained through automatic statistical translation; where the essential translation unit is the word «technology» in English.
Translator English — Chinese
科技
1,325 millions of speakers
Translator English — Spanish
tecnología
570 millions of speakers
Translator English — Hindi
प्रौद्योगिकी
380 millions of speakers
Translator English — Arabic
تِكْنُولُوجيَا
280 millions of speakers
Translator English — Russian
технология
278 millions of speakers
Translator English — Portuguese
tecnologia
270 millions of speakers
Translator English — Bengali
প্রযুক্তি
260 millions of speakers
Translator English — French
technologie
220 millions of speakers
Translator English — Malay
Teknologi
190 millions of speakers
Translator English — German
Technologie
180 millions of speakers
Translator English — Japanese
技術
130 millions of speakers
Translator English — Korean
기술
85 millions of speakers
Translator English — Javanese
Teknologi
85 millions of speakers
Translator English — Vietnamese
công nghệ
80 millions of speakers
Translator English — Tamil
தொழில்நுட்பம்
75 millions of speakers
Translator English — Marathi
तंत्रज्ञान
75 millions of speakers
Translator English — Turkish
teknoloji
70 millions of speakers
Translator English — Italian
tecnologia
65 millions of speakers
Translator English — Polish
technologia
50 millions of speakers
Translator English — Ukrainian
технологія
40 millions of speakers
Translator English — Romanian
tehnologie
30 millions of speakers
Translator English — Greek
τεχνολογία
15 millions of speakers
Translator English — Afrikaans
tegnologie
14 millions of speakers
Translator English — Swedish
teknologi
10 millions of speakers
Translator English — Norwegian
teknologi
5 millions of speakers
Trends of use of technology
TENDENCIES OF USE OF THE TERM «TECHNOLOGY»
The term «technology» is very widely used and occupies the 770 position in our list of most widely used terms in the English dictionary.
FREQUENCY
Very widely used
The map shown above gives the frequency of use of the term «technology» in the different countries.
Principal search tendencies and common uses of technology
List of principal searches undertaken by users to access our English online dictionary and most widely used expressions with the word «technology».
FREQUENCY OF USE OF THE TERM «TECHNOLOGY» OVER TIME
The graph expresses the annual evolution of the frequency of use of the word «technology» during the past 500 years. Its implementation is based on analysing how often the term «technology» appears in digitalised printed sources in English between the year 1500 and the present day.
Examples of use in the English literature, quotes and news about technology
10 QUOTES WITH «TECHNOLOGY»
Famous quotes and sentences with the word technology.
We are finally entering an exciting time in medicine where we have the technology to custom-tailor treatment and preventive protocols just as we’d custom-tailor a suit or designer gown to one’s individual body. But it all begins with you. You have to know yourself in a manner that you’ve probably never done before.
Our industry has invested so much money in technology that perhaps it’s time to invest in talent, in people.
If you want to bring down the prices of healthcare and education, the answer will be more innovation, more technology, which will then have the effect of freaking everybody out and saying, ‘Oh, my God, you’re going to kill all the jobs.’
Any new technology tends to go through a 25-year adoption cycle.
In my column series ‘The Main Thing’, I often talk about how Internet technology can improve the way people communicate — both within a business and between a business and its customers and partners.
It seems to me so much technology could be applied to entertainment. Augmented reality, and even just the iPad — touch-screen technology, it was, you know, it still is extremely underused by entertainment.
I forced myself to think what is the new concept and it became clear to me that it was risk, not only in technology and ecology, but in life and employment, too.
As children, many of us were taught never to talk to strangers. As parents and grandparents, our message must change with technology to include strangers on the Internet.
My father taught us that to thrive, excellence in technology, quality, and customer service along with cost competitiveness is a prerequisite. His contribution to business, the economy, and society at large can never be underscored enough.
If we want technology to serve society rather than enslave it, we have to build systems accessible to all people — be they male or female, young, old, disabled, computer wizards or technophobes.
10 ENGLISH BOOKS RELATING TO «TECHNOLOGY»
Discover the use of technology in the following bibliographical selection. Books relating to technology and brief extracts from same to provide context of its use in English literature.
1
Speech Technology: Theory and Applications
One of the goals in this book is to emphasize the application. Userexperience, human factors and usability issues are the focus in this book.
Fang Chen, Kristiina Jokinen, 2010
2
The Book: The Life Story of a Technology
Introduces the history of the book, beginning with papyrus in ancient Egypt, through the development of the printing press, to current computer-based technologies, including its influence on societies and cultures around the world.
3
Information Technology and Educational Management in the …
The papers presented in this volume are the result of an international call for papers addressing the challenges faced by the information technology and education management (ITEM) field in a society where knowledge management is becoming a …
Arthur Tatnall, Javier Osorio, Adrie Visscher, 2005
«More thriller than primer, this is the best technology book I have ever read.
‘Digital Technology’ examines how the digital revolution is shaping daily life in so many ways. It looks at the basics of digitising information of all kinds and spreading it around the world at the touch of a keypad.
6
Autonomous Technology: Technics-out-of-control as a Theme in …
The truth of the matter is that our deficiency does not lie in the want of well-verified «facts.
7
Marketing High Technology
From an all-encompassing philosophy that great marketing is a crusade requiring total commitment, to a careful study of the cost of attacking a competitor, this book is an essential tool for survival in today’s high-risk, fast- changing, …
8
Geography and Technology
While these and other important geographic technologies, including remote sensing, location-based services, and many others addressed in this book, are forging new opportunities for geography and geographers, they also pose challenges.
Stanley D. Brunn, Susan L. Cutter, J.W. Harrington Jr., 2004
9
THE RACE BETWEEN EDUCATION AND TECHNOLOGY
This book provides a careful historical analysis of the co-evolution of educational attainment and the wage structure in the United States through the twentieth century.
Claudia Dale Goldin, Lawrence F. Katz, 2008
10
Advanced Educational Technology in Technology Education
Proceedings of the NATO Advanced Study Institute on Advanced Educational Technology in Technology Education, held in Salford, U.K., August 17-28, 1992
Anthony Gordon, Michael Hacker, Marc de Vries, 1993
10 NEWS ITEMS WHICH INCLUDE THE TERM «TECHNOLOGY»
Find out what the national and international press are talking about and how the term technology is used in the context of the following news items.
Intel And Micron Announce Breakthrough Faster-Than-Flash 3D …
3D XPoint technology claims to be 1,000 times faster, has 1,000 times greater … The technology is a fundamental breakthrough in the memory storage industry, … «Forbes, Jul 15»
WTO Countries Clinch Deal to End Tariffs on Many High-Tech Goods
It builds on a previous WTO information-technology agreement, or ITA, that many officials saw as woefully out of date because it didn’t cover products that were … «Wall Street Journal, Jul 15»
Micron Technology Is Said to Be Takeover Target of Chinese …
HONG KONG — It is either the first step in the largest takeover of an American company by a Chinese one or a new chapter in the emerging technological cold … «New York Times, Jul 15»
Tech fail! Explaining today’s 3 big computer errors
The problem with technology is that it is created by humans. And we know how flawless …. I suspect that technology is testing our response. What technology is … «CNNMoney, Jul 15»
A bad day for technology at NYSE, United Airlines and Wall Street …
Travelers look at the United Airlines monitor for flight status at Chicago’s O’Hare International Airport on Wednesday after flights were delayed or canceled. «The Seattle Times, Jul 15»
Google creates Sidewalk Labs to redesign city living with technology
Google is continuing its expansion into every corner of human life. The search giant today announced the creation of Sidewalk Labs, a new and independent … «The Verge, Jun 15»
Google’s new finger control technology is straight out of a science …
The company’s lab for advanced projects showed off new technology on Friday that lets users move their fingers in the air to control objects in the virtual world. «Business Insider, May 15»
We caught Chinese technology spies RED-HANDED, claims US …
Six Chinese nationals acting as university professors and graduate students have been arrested on charges of stealing wireless technology from US firms and … «The Register, May 15»
CORRECTING and REPLACING New Apple Watch Has Lowest …
The much-anticipated new Apple Watch has the lowest hardware costs compared to retail price of any Apple phone IHS Technology has researched, according … «Business Wire, Apr 15»
FIFA Women’s World Cup Hawk-Eye confirmed as goal-line …
FIFA is pleased to confirm Hawk-Eye as the official goal-line technology (GLT) provider for the FIFA Women’s World Cup Canada 2015™, which kicks off in … «FIFA.com, Mar 15»
REFERENCE
« EDUCALINGO. Technology [online]. Available <https://educalingo.com/en/dic-en/technology>. Apr 2023 ».
Download the educalingo app
Discover all that is hidden in the words on
Subjects>Arts & Humanities>English Language Arts
Wiki User
∙ 11y ago
Best Answer
Copy
From Ancient Greek τεχνολογία (tekhnologia, «systematic
treatment (of grammar)»), from τέχνη (tekhne, «art») + -λογία.
Wiki User
∙ 11y ago
This answer is:
Study guides
Add your answer:
Earn +
20
pts
Q: What is the origin of the word ‘technology’?
Write your answer…
Submit
Still have questions?
Continue Learning about English Language Arts
What is the word origin for technology?
Greek Greek
What is the word origin for the word incredulous?
what is the word origin for incredulous
What is the origin of the word ballot?
the origin is where the word came from but the specific origin
of the word ballot is latin root word.
Origin of the word kitchen?
What is the origin of the word kitchen
What is the origin of the word nincompoop?
what is the origin of the word nincompoop or ninkumpoop
Related questions
People also asked
By the mid 20th century, humans had achieved a mastery of technology sufficient to leave the atmosphere of the Earth for the first time and explore space.
Technology is the making, usage, and knowledge of tools, machines, techniques, crafts, systems or methods of organization in order to solve a problem or perform a specific function. It can also refer to the collection of such tools, machinery, and procedures. The word technology comes from Greek τεχνολογία (technología); from τέχνη (téchnē), meaning «art, skill, craft», and -λογία (-logía), meaning «study of-«.[1] The term can either be applied generally or to specific areas: examples include construction technology, medical technology, and information technology.
Technologies significantly affect human as well as other animal species’ ability to control and adapt to their natural environments. The human species’ use of technology began with the conversion of natural resources into simple tools. The prehistorical discovery of the ability to control fire increased the available sources of food and the invention of the wheel helped humans in travelling in and controlling their environment. Recent technological developments, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact freely on a global scale. However, not all technology has been used for peaceful purposes; the development of weapons of ever-increasing destructive power has progressed throughout history, from clubs to nuclear weapons.
Technology has affected society and its surroundings in a number of ways. In many societies, technology has helped develop more advanced economies (including today’s global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products, known as pollution, and deplete natural resources, to the detriment of the Earth and its environment. Various implementations of technology influence the values of a society and new technology often raises new ethical questions. Examples include the rise of the notion of efficiency in terms of human productivity, a term originally applied only to machines, and the challenge of traditional norms.
Philosophical debates have arisen over the present and future use of technology in society, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar movements criticise the pervasiveness of technology in the modern world, opining that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition. Indeed, until recently, it was believed that the development of technology was restricted only to human beings, but recent scientific studies indicate that other primates and certain dolphin communities have developed simple tools and learned to pass their knowledge to other generations.
Contents
- 1 Definition and usage
- 2 Science, engineering and technology
- 3 History
- 3.1 Paleolithic (2.5 million – 10,000 BC)
- 3.1.1 Stone tools
- 3.1.2 Fire
- 3.1.3 Clothing and shelter
- 3.2 Neolithic through Classical Antiquity (10,000BC – 300AD)
- 3.2.1 Metal tools
- 3.2.2 Energy and Transport
- 3.3 Medieval and Modern history (300 AD —)
- 3.1 Paleolithic (2.5 million – 10,000 BC)
- 4 Technology and philosophy
- 4.1 Technicism
- 4.2 Optimism
- 4.3 Skepticism and critics of technology
- 4.4 Appropriate technology
- 5 Technology and competitiveness
- 6 Other animal species
- 7 Future technology
- 8 See also
- 8.1 Theories and concepts in technology
- 8.2 Economics of technology
- 8.3 Technology journalism
- 9 References
- 10 Further reading
Definition and usage
The use of the term technology has changed significantly over the last 200 years. Before the 20th century, the term was uncommon in English, and usually referred to the description or study of the useful arts.[2] The term was often connected to technical education, as in the Massachusetts Institute of Technology (chartered in 1861).[3] «Technology» rose to prominence in the 20th century in connection with the second industrial revolution. The meanings of technology changed in the early 20th century when American social scientists, beginning with Thorstein Veblen, translated ideas from the German concept of Technik into «technology.» In German and other European languages, a distinction exists between Technik and Technologie that is absent in English, as both terms are usually translated as «technology.» By the 1930s, «technology» referred not to the study of the industrial arts, but to the industrial arts themselves.[4] In 1937, the American sociologist Read Bain wrote that «technology includes all tools, machines, utensils, weapons, instruments, housing, clothing, communicating and transporting devices and the skills by which we produce and use them.»[5] Bain’s definition remains common among scholars today, especially social scientists. But equally prominent is the definition of technology as applied science, especially among scientists and engineers, although most social scientists who study technology reject this definition.[6] More recently, scholars have borrowed from European philosophers of «technique» to extend the meaning of technology to various forms of instrumental reason, as in Foucault’s work on technologies of the self («techniques de soi»).
Dictionaries and scholars have offered a variety of definitions. The Merriam-Webster dictionary offers a definition of the term: «the practical application of knowledge especially in a particular area» and «a capability given by the practical application of knowledge».[1] Ursula Franklin, in her 1989 «Real World of Technology» lecture, gave another definition of the concept; it is «practice, the way we do things around here».[7] The term is often used to imply a specific field of technology, or to refer to high technology or just consumer electronics, rather than technology as a whole.[8] Bernard Stiegler, in Technics and Time, 1, defines technology in two ways: as «the pursuit of life by means other than life», and as «organized inorganic matter.»[9]
Technology can be most broadly defined as the entities, both material and immaterial, created by the application of mental and physical effort in order to achieve some value. In this usage, technology refers to tools and machines that may be used to solve real-world problems. It is a far-reaching term that may include simple tools, such as a crowbar or wooden spoon, or more complex machines, such as a space station or particle accelerator. Tools and machines need not be material; virtual technology, such as computer software and business methods, fall under this definition of technology.[10]
The word «technology» can also be used to refer to a collection of techniques. In this context, it is the current state of humanity’s knowledge of how to combine resources to produce desired products, to solve problems, fulfill needs, or satisfy wants; it includes technical methods, skills, processes, techniques, tools and raw materials. When combined with another term, such as «medical technology» or «space technology», it refers to the state of the respective field’s knowledge and tools. «State-of-the-art technology» refers to the high technology available to humanity in any field.
Technology can be viewed as an activity that forms or changes culture.[11] Additionally, technology is the application of math, science, and the arts for the benefit of life as it is known. A modern example is the rise of communication technology, which has lessened barriers to human interaction and, as a result, has helped spawn new subcultures; the rise of cyberculture has, at its basis, the development of the Internet and the computer.[12] Not all technology enhances culture in a creative way; technology can also help facilitate political oppression and war via tools such as guns. As a cultural activity, technology predates both science and engineering, each of which formalize some aspects of technological endeavor.
Science, engineering and technology
The distinction between science, engineering and technology is not always clear. Science is the reasoned investigation or study of phenomena, aimed at discovering enduring principles among elements of the phenomenal world by employing formal techniques such as the scientific method.[13] Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability and safety.
Engineering is the goal-oriented process of designing and making tools and systems to exploit natural phenomena for practical human means, often (but not always) using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result.
Technology is often a consequence of science and engineering — although technology as a human activity precedes the two fields. For example, science might study the flow of electrons in electrical conductors, by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines, such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists; the three fields are often considered as one for the purposes of research and reference.[14]
The exact relations between science and technology in particular have been debated by scientists, historians, and policymakers in the late 20th century, in part because the debate can inform the funding of basic and applied science. In the immediate wake of World War II, for example, in the United States it was widely considered that technology was simply «applied science» and that to fund basic science was to reap technological results in due time. An articulation of this philosophy could be found explicitly in Vannevar Bush’s treatise on postwar science policy, Science—The Endless Frontier: «New products, new industries, and more jobs require continuous additions to knowledge of the laws of nature… This essential new knowledge can be obtained only through basic scientific research.» In the late-1960s, however, this view came under direct attack, leading towards initiatives to fund science for specific tasks (initiatives resisted by the scientific community). The issue remains contentious—though most analysts resist the model that technology simply is a result of scientific research.[15][16]
History
Paleolithic (2.5 million – 10,000 BC)
The use of tools by early humans was partly a process of discovery, partly of evolution. Early humans evolved from a species of foraging hominids which were already bipedal,[17] with a brain mass approximately one third that of modern humans.[18] Tool use remained relatively unchanged for most of early human history, but approximately 50,000 years ago, a complex set of behaviors and tool use emerged, believed by many archaeologists to be connected to the emergence of fully modern language.[19]
Stone tools
Hand axes from the Acheulian period
Human ancestors have been using stone and other tools since long before the emergence of Homo sapiens approximately 200,000 years ago.[20] The earliest methods of stone tool making, known as the Oldowan «industry», date back to at least 2.3 million years ago,[21] with the earliest direct evidence of tool usage found in Ethiopia within the Great Rift Valley, dating back to 2.5 million years ago.[22] This era of stone tool use is called the Paleolithic, or «Old stone age», and spans all of human history up to the development of agriculture approximately 12,000 years ago.
To make a stone tool, a «core» of hard stone with specific flaking properties (such as flint) was struck with a hammerstone. This flaking produced a sharp edge on the core stone as well as on the flakes, either of which could be used as tools, primarily in the form of choppers or scrapers.[23] These tools greatly aided the early humans in their hunter-gatherer lifestyle to perform a variety of tasks including butchering carcasses (and breaking bones to get at the marrow); chopping wood; cracking open nuts; skinning an animal for its hide; and even forming other tools out of softer materials such as bone and wood.[24]
The earliest stone tools were crude, being little more than a fractured rock. In the Acheulian era, beginning approximately 1.65 million years ago, methods of working these stone into specific shapes, such as hand axes emerged. The Middle Paleolithic, approximately 300,000 years ago, saw the introduction of the prepared-core technique, where multiple blades could be rapidly formed from a single core stone.[23] The Upper Paleolithic, beginning approximately 40,000 years ago, saw the introduction of pressure flaking, where a wood, bone, or antler punch could be used to shape a stone very finely.[25]
Fire
The discovery and utilization of fire, a simple energy source with many profound uses, was a turning point in the technological evolution of humankind.[26] The exact date of its discovery is not known; evidence of burnt animal bones at the Cradle of Humankind suggests that the domestication of fire occurred before 1,000,000 BC;[27] scholarly consensus indicates that Homo erectus had controlled fire by between 500,000 BC and 400,000 BC.[28][29] Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten.[30]
Clothing and shelter
Other technological advances made during the Paleolithic era were clothing and shelter; the adoption of both technologies cannot be dated exactly, but they were a key to humanity’s progress. As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380,000 BC, humans were constructing temporary wood huts.[31][32] Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa by 200,000 BC and into other continents, such as Eurasia.[33]
Neolithic through Classical Antiquity (10,000BC – 300AD)
An array of Neolithic artifacts, including bracelets, axe heads, chisels, and polishing tools.
Man’s technological ascent began in earnest in what is known as the Neolithic period («New stone age»). The invention of polished stone axes was a major advance because it allowed forest clearance on a large scale to create farms. The discovery of agriculture allowed for the feeding of larger populations, and the transition to a sedentist lifestyle increased the number of children that could be simultaneously raised, as young children no longer needed to be carried, as was the case with the nomadic lifestyle. Additionally, children could contribute labor to the raising of crops more readily than they could to the hunter-gatherer lifestyle.[34][35]
With this increase in population and availability of labor came an increase in labor specialization.[36] What triggered the progression from early Neolithic villages to the first cities, such as Uruk, and the first civilizations, such as Sumer, is not specifically known; however, the emergence of increasingly hierarchical social structures, the specialization of labor, trade and war amongst adjacent cultures, and the need for collective action to overcome environmental challenges, such as the building of dikes and reservoirs, are all thought to have played a role.[37]
Metal tools
Continuing improvements led to the furnace and bellows and provided the ability to smelt and forge native metals (naturally occurring in relatively pure form).[38] Gold, copper, silver, and lead, were such early metals. The advantages of copper tools over stone, bone, and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 8000 BC).[39] Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4000 BC). The first uses of iron alloys such as steel dates to around 1400 BC.
Energy and Transport
The wheel was invented circa 4000 BC.
Meanwhile, humans were learning to harness other forms of energy. The earliest known use of wind power is the sailboat.[40] The earliest record of a ship under sail is shown on an Egyptian pot dating back to 3200 BC.[41] From prehistoric times, Egyptians probably used the power of the Nile annual floods to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and ‘catch’ basins. Similarly, the early peoples of Mesopotamia, the Sumerians, learned to use the Tigris and Euphrates rivers for much the same purposes. But more extensive use of wind and water (and even human) power required another invention.
According to archaeologists, the wheel was invented around 4000 B.C. probably independently and nearly-simultaneously in Mesopotamia (in present-day Iraq), the Northern Caucasus (Maykop culture) and Central Europe. Estimates on when this may have occurred range from 5500 to 3000 B.C., with most experts putting it closer to 4000 B.C. The oldest artifacts with drawings that depict wheeled carts date from about 3000 B.C.; however, the wheel may have been in use for millennia before these drawings were made. There is also evidence from the same period of time that wheels were used for the production of pottery. (Note that the original potter’s wheel was probably not a wheel, but rather an irregularly shaped slab of flat wood with a small hollowed or pierced area near the center and mounted on a peg driven into the earth. It would have been rotated by repeated tugs by the potter or his assistant.) More recently, the oldest-known wooden wheel in the world was found in the Ljubljana marshes of Slovenia.[42]
The invention of the wheel revolutionized activities as disparate as transportation, war, and the production of pottery (for which it may have been first used). It didn’t take long to discover that wheeled wagons could be used to carry heavy loads and fast (rotary) potters’ wheels enabled early mass production of pottery. But it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources.
Medieval and Modern history (300 AD —)
Innovations continued through the Middle Ages with innovations such as silk, the horse collar and horseshoes in the first few hundred years after the fall of the Roman Empire. Medieval technology saw the use of simple machines (such as the lever, the screw, and the pulley) being combined to form more complicated tools, such as the wheelbarrow, windmills and clocks. The Renaissance brought forth many of these innovations, including the printing press (which facilitated the greater communication of knowledge), and technology became increasingly associated with science, beginning a cycle of mutual advancement. The advancements in technology in this era allowed a more steady supply of food, followed by the wider availability of consumer goods.
The automobile revolutionized personal transportation.
Starting in the United Kingdom in the 18th century, the Industrial Revolution was a period of great technological discovery, particularly in the areas of agriculture, manufacturing, mining, metallurgy and transport, driven by the discovery of steam power. Technology later took another step with the harnessing of electricity to create such innovations as the electric motor, light bulb and countless others. Scientific advancement and the discovery of new concepts later allowed for powered flight, and advancements in medicine, chemistry, physics and engineering. The rise in technology has led to the construction of skyscrapers and large cities whose inhabitants rely on automobiles or other powered transit for transportation. Communication was also greatly improved with the invention of the telegraph, telephone, radio and television. The late 19th and early 20th centuries saw a revolution in transportation with the invention of the steam-powered ship, train, airplane, and automobile.
F-15 and F-16 flying over a burning oil field in Kuwait in 1991.
The 20th century brought a host of innovations. In physics, the discovery of nuclear fission has led to both nuclear weapons and nuclear power. Computers were also invented and later miniaturized utilizing transistors and integrated circuits. These advancements subsequently led to the creation of the Internet, which ushered in the current Information Age. Humans have also been able to explore space with satellites (later used for telecommunication) and in manned missions going all the way to the moon. In medicine, this era brought innovations such as open-heart surgery and later stem cell therapy along with new medications and treatments. Complex manufacturing and construction techniques and organizations are needed to construct and maintain these new technologies, and entire industries have arisen to support and develop succeeding generations of increasingly more complex tools. Modern technology increasingly relies on training and education — their designers, builders, maintainers, and users often require sophisticated general and specific training. Moreover, these technologies have become so complex that entire fields have been created to support them, including engineering, medicine, and computer science, and other fields have been made more complex, such as construction, transportation and architecture.
Technology and philosophy
Technicism
Generally, technicism is a reliance or confidence in technology as a benefactor of society. Taken to extreme, technicism is the belief that humanity will ultimately be able to control the entirety of existence using technology. In other words, human beings will someday be able to master all problems and possibly even control the future using technology. Some, such as Stephen V. Monsma,[43] connect these ideas to the abdication of religion as a higher moral authority.
Optimism
Optimistic assumptions are made by proponents of ideologies such as transhumanism and singularitarianism, which view technological development as generally having beneficial effects for the society and the human condition. In these ideologies, technological development is morally good. Some critics see these ideologies as examples of scientism and techno-utopianism and fear the notion of human enhancement and technological singularity which they support. Some have described Karl Marx as a techno-optimist.[44]
Skepticism and critics of technology
On the somewhat skeptical side are certain philosophers like Herbert Marcuse and John Zerzan, who believe that technological societies are inherently flawed. They suggest that the inevitable result of such a society is to become evermore technological at the cost of freedom and psychological health.
Many, such as the Luddites and prominent philosopher Martin Heidegger, hold serious, although not entirely deterministic reservations, about technology (see «The Question Concerning Technology[45])». According to Heidegger scholars Hubert Dreyfus and Charles Spinosa, «Heidegger does not oppose technology. He hopes to reveal the essence of technology in a way that ‘in no way confines us to a stultified compulsion to push on blindly with technology or, what comes to the same thing, to rebel helplessly against it.’ Indeed, he promises that ‘when we once open ourselves expressly to the essence of technology, we find ourselves unexpectedly taken into a freeing claim.’[46]» What this entails is a more complex relationship to technology than either techno-optimists or techno-pessimists tend to allow.[47]
Some of the most poignant criticisms of technology are found in what are now considered to be dystopian literary classics, for example Aldous Huxley’s Brave New World and other writings, Anthony Burgess’s A Clockwork Orange, and George Orwell’s Nineteen Eighty-Four. And, in Faust by Goethe, Faust’s selling his soul to the devil in return for power over the physical world, is also often interpreted as a metaphor for the adoption of industrial technology. More recently, modern works of science fiction, such as those by Philip K. Dick and William Gibson, and films (e.g. Blade Runner, Ghost in the Shell) project highly ambivalent or cautionary attitudes toward technology’s impact on human society and identity.
The late cultural critic Neil Postman distinguished tool-using societies from technological societies and, finally, what he called «technopolies,» that is, societies that are dominated by the ideology of technological and scientific progress, to the exclusion or harm of other cultural practices, values and world-views.[48]
Darin Barney has written about technology’s impact on practices of citizenship and democratic culture, suggesting that technology can be construed as (1) an object of political debate, (2) a means or medium of discussion, and (3) a setting for democratic deliberation and citizenship. As a setting for democratic culture, Barney suggests that technology tends to make ethical questions, including the question of what a good life consists in, nearly impossible, because they already give an answer to the question: a good life is one that includes the use of more and more technology.[49]
Nikolas Kompridis has also written about the dangers of new technology, such as genetic engineering, nanotechnology, synthetic biology and robotics. He warns that these technologies introduce unprecedented new challenges to human beings, including the possibility of the permanent alteration of our biological nature. These concerns are shared by other philosophers, scientists and public intellectuals who have written about similar issues (e.g. Francis Fukuyama, Jürgen Habermas, William Joy, and Michael Sandel).[50]
Another prominent critic of technology is Hubert Dreyfus, who has published books On the Internet and What Computers Still Can’t Do.
Another, more infamous anti-technological treatise is Industrial Society and Its Future, written by Theodore Kaczynski (aka The Unabomber) and printed in several major newspapers (and later books) as part of an effort to end his bombing campaign of the techno-industrial infrastructure.
Appropriate technology
The notion of appropriate technology, however, was developed in the 20th century (e.g., see the work of Jacques Ellul) to describe situations where it was not desirable to use very new technologies or those that required access to some centralized infrastructure or parts or skills imported from elsewhere. The eco-village movement emerged in part due to this concern.
Technology and competitiveness
In 1983 a classified program was initiated in the US intelligence community to reverse the US declining economic and military competitiveness. The program, Project Socrates, used all source intelligence to review competitiveness worldwide for all forms of competition to determine the source of the US decline. What Project Socrates determined was that technology exploitation is the foundation of all competitive advantage and that the source of the US declining competitiveness was the fact that decision-making through the US both in the private and public sectors had switched from decision making that was based on technology exploitation (i.e., technology-based planning) to decision making that was based on money exploitation (i.e., economic-based planning) at the end of World War II.
Technology is properly defined as any application of science to accomplish a function. The science can be leading edge or well established and the function can have high visibility or be significantly more mundane but it is all technology, and its exploitation is the foundation of all competitive advantage.
Technology-based planning is what was used to build the US industrial giants before WWII (e.g., Dow, DuPont, GM) and it what was used to transform the US into a superpower. It was not economic-based planning.
Project Socrates determined that to rebuild US competitiveness, decision making throughout the US had to readopt technology-based planning. Project Socrates also determined that countries like China and India had continued executing technology-based (while the US took its detour into economic-based) planning, and as a result had considerable advanced the process and were using it to build themselves into superpowers. To rebuild US competitiveness the US decision-makers needed adopt a form of technology-based planning that was far more advanced than that used by China and India.
Project Socrates determined that technology-based planning makes an evolutionary leap forward every few hundred years and the next evolutionary leap, the Automated Innovation Revolution, was poised to occur. In the Automated Innovation Revolution the process for determining how to acquire and utilize technology for a competitive advantage (which includes R&D) is automated so that it can be executed with unprecedented speed, efficiency and agility.
Project Socrates developed the means for automated innovation so that the US could lead the Automated Innovation Revolution in order to rebuild and maintain the country’s economic competitiveness for many generations.[51][52][53]
Other animal species
This adult gorilla uses a branch as a walking stick to gauge the water’s depth; an example of technology usage by primates.
The use of basic technology is also a feature of other animal species apart from humans. These include primates such as chimpanzees, some dolphin communities,[54][55] and crows.[56][57] Considering a more generic perspective of technology as ethology of active environmental conditioning and control, we can also refer to animal examples such as beavers and their dams, or bees and their honeycombs.
The ability to make and use tools was once considered a defining characteristic of the genus Homo.[58] However, the discovery of tool construction among chimpanzees and related primates has discarded the notion of the use of technology as unique to humans. For example, researchers have observed wild chimpanzees utilising tools for foraging: some of the tools used include leaf sponges, termite fishing probes, pestles and levers.[59] West African chimpanzees also use stone hammers and anvils for cracking nuts,[60] as do capuchin monkeys of Boa Vista, Brazil.[61]
Future technology
Theories of technology often attempt to predict the future of technology based on the high technology and science of the time.
See also
|
|
Theories and concepts in technology
|
|
References
- ^ a b «Definition of technology». Merriam-Webster. http://mw1.merriam-webster.com/dictionary/technology. Retrieved 2007-02-16.
- ^ For ex., George Crabb, Universal Technological Dictionary, or Familiar Explanation of the Terms Used in All Arts and Sciences, Containing Definitions Drawn From the Original Writers, (London: Baldwin, Cradock and Joy, 1823), s.v. «technology.»
- ^ Julius Adams Stratton and Loretta H. Mannix, Mind and Hand: The Birth of MIT (Cambridge: MIT Press, 2005), 190-92. ISBN 0262195240.
- ^ Eric Schatzberg, «Technik Comes to America: Changing Meanings of Technology Before 1930,» Technology and Culture 47 (July 2006): 486-512.
- ^ Read Bain, «Technology and State Government,» American Sociological Review 2 (December 1937): 860.
- ^ Donald A. MacKenzie and Judy Wajcman, «Introductory Essay» in The Social Shaping of Technology, 2nd ed. (Buckingham, England : Open University Press, 1999) ISBN 0-335-19913-5.
- ^ Franklin, Ursula. «Real World of Technology». House of Anansi Press. http://www.anansi.ca/titles.cfm?series_id=4&pub_id=58. Retrieved 2007-02-13.
- ^ «Technology news». BBC News. http://news.bbc.co.uk/1/hi/technology/default.stm. Retrieved 2006-02-17.
- ^ Stiegler, Bernard (1998). Technics and Time, 1: The Fault of Epimetheus. Stanford University Press. pp. 17, 82. ISBN 0-8047-3041-3. Stiegler has more recently stated that biotechnology can no longer be defined as «organized inorganic matter,» given that it is, rather, «the reorganization of the organic.» Stiegler, Bernard (2008). L’avenir du passé: Modernité de l’archéologie. La Découverte. p. 23. ISBN 2-7071-5495-4.
- ^ «Industry, Technology and the Global Marketplace: International Patenting Trends in Two New Technology Areas». Science and Engineering Indicators 2002. National Science Foundation. http://www.nsf.gov/statistics/seind02/c6/c6s5.htm. Retrieved 2007-05-07.
- ^ Borgmann, Albert (2006). «Technology as a Cultural Force: For Alena and Griffin» (fee required). The Canadian Journal of Sociology 31 (3): 351–360. doi:10.1353/cjs.2006.0050. http://muse.jhu.edu/login?uri=/journals/canadian_journal_of_sociology/v031/31.3borgmann.html. Retrieved 2007-02-16.
- ^ Macek, Jakub. «Defining Cyberculture». http://macek.czechian.net/defining_cyberculture.htm. Retrieved 2007-05-25.
- ^ «Science». Dictionary.com. http://dictionary.reference.com/browse/science. Retrieved 2007-02-17.
- ^ «Intute: Science, Engineering and Technology». Intute. http://www.intute.ac.uk/sciences/. Retrieved 2007-02-17.
- ^ Wise, George (1985). «Science and Technology». Osiris (2nd Series) 1: 229–246.
- ^ Guston, David H. (2000). Between politics and science: Assuring the integrity and productivity of research. New York: Cambridge University Press. ISBN 0521653185.
- ^ «Mother of man – 3.2 million years ago». BBC. http://www.bbc.co.uk/sn/prehistoric_life/human/human_evolution/mother_of_man1.shtml. Retrieved 2008-05-17.
- ^ «Human Evolution». History channel. Archived from the original on 2008-04-23. http://web.archive.org/web/20080423204038/http://www.history.com/encyclopedia.do?articleId=212317. Retrieved 2008-05-17.
- ^ Wade, Nicholas (2003-07-15). «Early Voices: The Leap to Language». The New York Times. http://query.nytimes.com/gst/fullpage.html?res=9503E0DF173CF936A25754C0A9659C8B63&sec=health&spon=&pagewanted=1. Retrieved 2008-05-17.
- ^ «Human Ancestors Hall: Homo sapiens». Smithsonian Institution. http://anthropology.si.edu/humanorigins/ha/sap.htm. Retrieved 2007-12-08.
- ^ «Ancient ‘tool factory’ uncovered». BBC News. 1999-05-06. http://news.bbc.co.uk/1/hi/sci/tech/336555.stm. Retrieved 2007-02-18.
- ^ Heinzelin, Jean de; Clark, JD; White, T; Hart, W; Renne, P; Woldegabriel, G; Beyene, Y; Vrba, E (April 1999). «Environment and Behavior of 2.5-Million-Year-Old Bouri Hominids». Science 284 (5414): 625–629. doi:10.1126/science.284.5414.625. PMID 10213682.
- ^ a b Burke, Ariane. «Archaeology». Encyclopedia Americana. Archived from the original on 2008-05-13. http://web.archive.org/web/20080513213506/http://ea.grolier.com/cgi-bin/article?assetid=0019880-04. Retrieved 2008-05-17.
- ^ Plummer, Thomas (2004). Flaked Stones and Old Bones: Biological and Cultural Evolution at the Dawn of Technology. Yearbook of Physical Anthropology.
- ^ Haviland, William A. (2004). Cultural Anthropology: The Human Challenge. The Thomson Corporation. p. 77. ISBN 0534624871.
- ^ Crump, Thomas (2001). A Brief History of Science. Constable & Robinson. p. 9. ISBN 1-84119-235-X.
- ^ «Fossil Hominid Sites of Sterkfontein, Swartkrans, Kromdraai, and Environs». UNESCO. http://whc.unesco.org/pg.cfm?cid=31&id_site=915. Retrieved 2007-03-10.
- ^ «History of Stone Age Man». History World. http://www.historyworld.net/wrldhis/PlainTextHistories.asp?historyid=ab10. Retrieved 2007-02-13.
- ^ James, Steven R. (February 1989). «Hominid Use of Fire in the Lower and Middle Pleistocene» (fee required). Current Anthropology 30 (1): 1–26. doi:10.1086/203705. JSTOR 2743299.
- ^ Stahl, Ann B. (1984). «Hominid dietary selection before fire» (fee required). Current Anthropology 25 (2): 151–168. doi:10.1086/203106. JSTOR 2742818.
- ^ O’Neil, Dennis. «Evolution of Modern Humans: Archaic Homo sapiens Culture». Palomar College. http://anthro.palomar.edu/homo2/mod_homo_3.htm. Retrieved 2007-03-31.
- ^ Villa, Paola (1983). Terra Amata and the Middle Pleistocene archaeological record of southern France. Berkeley: University of California Press. p. 303. ISBN 0-520-09662-2.
- ^ Cordaux, Richard; Stoneking, Mark (2003). «South Asia, the Andamanese and the genetic evidence for an «early» human dispersal out of Africa» (PDF). American Journal of Human Genetics 72 (6): 1586. doi:10.1086/375407. PMC 1180321. PMID 12817589. http://site.voila.fr/rcordaux/pdfs/04.pdf.
- ^ «The First Baby Boom: Skeletal Evidence Shows Abrupt Worldwide Increase In Birth Rate During Neolithic Period». Science Daily. 2006-01-04. http://www.sciencedaily.com/releases/2006/01/060103114116.htm. Retrieved 2008-05-17.
- ^ Sussman, Robert W.; Hall, Roberta L. (April 1972). «Child Transport, Family Size, and Increase in Human Population During the Neolithic». Current Anthropology (University of Chicago Press) 13 (2): 258–267. doi:10.1086/201274. JSTOR 2740977.
- ^ Ferraro, Gary P. (2006). Cultural Anthropology: An Applied Perspective. The Thomson Corporation. ISBN 0495030392. http://books.google.com/?id=isGyuX9motEC&pg=PA163&lpg=PA163&dq=labor+neolithic+population. Retrieved 2008-05-17.
- ^ Patterson, Gordon M. (1992). The ESSENTIALS of Ancient History. Research & Education Association. ISBN 9780878917044. http://books.google.com/?id=8pKKwlEcpwYC&pg=PA7&lpg=PA7&dq=labor+surplus+neolithic+population. Retrieved 2008-05-17.
- ^ Cramb, Alan W. «A Short History of Metals». Carnegie Mellon University. http://neon.mems.cmu.edu/cramb/Processing/history.html. Retrieved 2007-01-08.
- ^ Chisholm, Hugh (1910). Encyclopædia Britannica. p. 708. http://books.google.com/books?id=VANVAEjBG-QC&pg=PA708&lr=&as_brr=1&ei=fl2NR6ODGYbWiwGW8Zi_BA. Retrieved 2008-05-17.
- ^ Dodge, Darrell. «Part 1 — Early History Through 1875». Illustrated History of Wind Power Development. http://www.telosnet.com/wind/early.html. Retrieved 23 June 2010.
- ^ Dollinger, André. «Ships and Boats». Pharaonic Egypt. http://www.reshafim.org.il/ad/egypt/timelines/topics/navigation.htm. Retrieved 23 June 2010.
- ^ «Slovenian Marsh Yields World’s Oldest Wheel». Ameriška Domovina. 2003-03-27. http://www.angelfire.com/country/veneti/AmerDomoOldestWheel.html. Retrieved 2007-02-13.
- ^ Monsma, Stephen V. (1986). Responsible Technology. Grand Rapids: W.B. Eerdmans Pub. Co. ISBN 0802801757.
- ^ Hughes, James (2002). Democratic Transhumanism 2.0. http://www.changesurfer.com/Acad/DemocraticTranshumanism.htm. Retrieved 2007-01-26.
- ^ Lovitt, William (1977). «The Question Concerning Technology». The Question Concerning Technology and Other Essays. Harper Torchbooks. pp. 3–35. ISBN 0613913140. http://www.culturaleconomics.atfreeweb.com/Anno/Heidegger%20The%20Question%201954.htm. Retrieved 2007-11-21.
- ^ Martin Heidegger, ‘‘The Question Concerning Technology,’’ in The Question Concerning Technology and Other Essays, trans. W. Lovitt, New York, Harper Torchbooks, 1977, pp. 25–6.
- ^ Hubert Dreyfus and Charles Spinosa, «Further Reflections on Heidegger, Technology, and the Everyday,» in Nikolas Kompridis, ed. Philosophical Romanticism, New York: Routledge, 2006, 265-281.
- ^ Neil Postman, Technopoly: The Surrender of Culture to Technology, New York: Vintage, 1993.
- ^ Darin Barney, One Nation Under Google, Toronto: House of Anansi Press, 2007.
- ^ Nikolas Kompridis, «Technology’s Challenge to Democracy,» Parrhesia 8 (2009), 20-33.
- ^ Koprowski, Gene (1991-03-07). «Tech Intelligence Revival? Commerce May Model on DIA’s Project Socrates». Washington Technology.
- ^ Smith, Esther (1988-05-05). «DoD Unveils Competitive Tool: Project Socrates Offers Valuable Analysis». Washington Technology.
- ^ Holmes, Stanley (1991-01-19). «Technology boosts U.S. on battlefield, Stuart expert says». The Stuart News.
- ^ Sagan, Carl; Druyan, Ann; Leakey, Richard. «Chimpanzee Tool Use». Archived from the original on 2006-09-21. http://web.archive.org/web/20060921062716/http://www.mc.maricopa.edu/dept/d10/asb/anthro2003/origins/hominid_journey/optional3.html. Retrieved 2007-02-13.
- ^ Rincon, Paul (2005-06-07). «Sponging dolphins learn from mum.». BBC News. http://news.bbc.co.uk/2/hi/science/nature/4613709.stm. Retrieved 2007-02-13.
- ^ Schmid, Randolph E. (2007-10-04). «Crows use tools to find food». MSNBC. http://www.msnbc.msn.com/id/21135366/. Retrieved 2008-05-17.
- ^ Rutz, C.; Bluff, L.A.; Weir, A.A.S.; Kacelnik, A. (2007-10-04). «Video cameras on wild birds». Science.
- ^ Oakley, K. P. (1976). Man the Tool-Maker. University of Chicago Press. ISBN 978-0226612706.
- ^ McGrew, W. C (1992). Chimpanzee Material Culture. Cambridge u.a.: Cambridge Univ. Press. ISBN 978-0521423717.
- ^ Boesch, Christophe; Boesch, Hedwige (1984). «Mental map in wild chimpanzees: An analysis of hammer transports for nut cracking» (fee required). Primates 25 (25): 160–170. doi:10.1007/BF02382388. http://www.springerlink.com/content/e7x6620732717288/.
- ^ Nut-cracking monkeys find the right tool for the job, New Scientist, 15 January 2009
Further reading
- Kremer, Michael (1993). «Population Growth and Technological Change: One Million B.C. to 1990». Quarterly Journal of Economics (The MIT Press) 108 (3): 681–716. doi:10.2307/2118405. http://jstor.org/stable/2118405.
- Frank Popper (2007) From Technological to Virtual Art, Leonardo Books, MIT Press
- Charlie Gere (2005) Art, Time and Technology: Histories of the Disappearing Body, Berg
- Ambrose, Stanley H. (2001-03-02) (PDF). Paleolithic Technology and Human Evolution. Science. http://www3.isrl.uiuc.edu/~junwang4/langev/localcopy/pdf/ambrose01science.pdf. Retrieved 2007-03-10.
- Kevin Kelly. What Technology Wants. New York, Viking Press, October 14, 2010, hardcover, 416 pages. ISBN 9780670022151
v · d · eTechnology | |
---|---|
Outline of technology · Science | |
Applied science |
Archaeology · Artificial intelligence · Ceramic · Computing · Cryogenics · Electronics · Energy · Energy storage · Engineering geology · Engineering physics · Environmental engineering science · Environmental technology · Fisheries science · Hydraulics · Management · Materials science · Microtechnology · Nanotechnology · Nuclear technology · Particle physics · Technician · Technologist · Zoography |
Domestic |
Domestic appliances · Food technology |
Educational |
Educational software · Digital technologies in education · Information and communication technologies in education · Impact · Multimedia learning · Virtual campus · Virtual education |
Engineering |
Acoustical · Aerospace · Agricultural · Architectural · Audio · Biochemical · Biological · Broadcast · Building services · Chemical · Civil · Computer · Construction · Control · Electrical · Electronic · Enterprise · Entertainment · Facade · Food · Genetic · Geotechnical · Hydraulic · Industrial · Mechanical · Mechatronics · Metallurgy · Mining · Network · Nuclear · Offshore · Ontology · Optical · Petroleum · Protein · Radio Frequency · Structural · Systems · Telecommunications |
Environmental |
Ecological design · Environmental engineering · Renewable energy · Sustainable design · Sustainable engineering |
Health / safety |
Bioinformatics · Biomechatronics · Biomedical · Biotechnology · Cheminformatics · Fire protection · Healthcare science · Medical technology · Nutrition · Pharmacology · Safety · Sanitary · Tissue |
Industry |
Aquaculture · Automation · Building officials · Business informatics · Construction (Construction management) · Financial · Fishing · Industrial technology · Machinery · Manufacturing · Mining · Project management · Research and development · Textile |
Information |
Graphics · Information and communication technologies · Music technology · Software · Speech recognition · Systematics · Visual technology |
Military |
Ammunition · Army engineering maintenance · Bombs · Military communications · Military engineering |
Transport |
Aerospace · Aerospace engineering · Automotive · Motor vehicles · Naval architecture · Space technology · Traffic · Transport |
Other |
Emerging technologies (List) · Fictional technology · History of technology (Ancient technology · Medieval technology · Industrial Revolution · Jet Age · Information Age) · Invention · List of technologies · Philosophy of technology · Science and technology by country · Technological change · Technology and society · Theories of technology |
Category |
Everyone knows we’re surrounded by “tech.” It’s reshaping every aspect of society in every corner of the globe, making countless twenty-something millionaires in the process, and keeping kids from playing outside like they used to.
Those things might be true. And yet, we’re not great at identifying what “tech” really is: ask someone to point it out, and they’ll look for the closest object with a glowing screen. This focus, while not exactly incorrect, artificially silos digital devices from the rest of mankind’s toolbox, obscuring the rich fabric connecting everything our species has made and done.
So, let’s step back a bit.
Technology’s Greek Origin Story
The Greek tekhno meant skill, and this definition was passed down directly into today’s technique, which is literally a skill — and, importantly, a skill of any sort: there’s technique to baking a soufflé, to origami, to handstands, to ballet, and sure, to programming computers. As such, cooking, paper-folding, acrobatics, dance, and software engineering are all technical: in order to do them well, you need technique, or skill. Also importantly, technique doesn’t inherently require technology: a handstand needs nothing but the human body, gravity, and the ground.
By taking technique and giving it material form, we created technology.The magic of technology comes from adding the logy, which is derived from the root leg, meaning collect. So, if we were to collect a skill, what would it look like? Well, originally it looked like a book: tekhnologia was compiled information about grammar. As we might recall from our elementary school days, proper grammar requires quite a bit of skill! By taking technique (like the rules of language) and giving it material form (like words written on pages), we created technology.
So, from the beginning, technology was a physical manifestation of a skill. And that meaning lasted for quite a while: it was still the definition when the Massachusetts Institute of Technology was founded in 1861, with the charter of “instituting and maintaining a society of arts, a museum of arts, and a school of industrial science” — what better way to collect and manifest skills than to create a university?
And Then the Industrial Revolution
That definition might not have changed, but with the Industrial Era in full swing, plenty of other things had. Among the many transformations that swept across society, textiles — once skillfully made by hand — were now made by machines. So if looms were the physical manifestation of the skill of making fabric, were looms technology? And what about all the other new inventions that mechanized human techniques? We could’ve gone either way on those questions, but in the natural course of language, we decided yes, and technology was broadened from books about the skill of grammar to any physical form of any skill at all.
There were near-endless new inventions introduced during the Industrial Revolution, but that wasn’t unique to the time. Inevitably, being the clever species we are, there will always be some new thing we’ve made. And, being new and exciting, that thing will get our attention, while everything else fades into the patterns of everyday life.In recent times, most of those new things — cellphones, tablets, desktop computers, etc. — have had glowing screens. So, with our limited scope of attention,
In recent times, most of those new things — cellphones, tablets, desktop computers, etc. — have had glowing screens. So, with our limited scope of attention, technology has been implicitly restricted to objects with pixels and a backlight. And these are, to be sure, quite wondrous technology. But so was the electric refrigerator before that, the airplane before that, and the fax machine, the lightbulb, gunpowder, and stone tools even longer ago. And they’re all technology.
Continuing Our Human Tradition
Why even point out that our technique has been physically embedded in a tool? It’s the 21st century, of course it has.Earlier we noted that the magic of technology comes from adding the logy to tekhno. Unfortunately, this magic was no match for the relentless drive of linguistic effort reduction, which shortened the full word down to just tech. It’s almost poetic: why even point out that our technique has been physically embedded in a tool? It’s the 21st century, of course it has. And that brings us to a riddle:
Question: How long do you go after waking up in the morning without using technology?
Answer: Zero seconds — Your pillow is technology. (The technique of supporting one’s head was once done with one’s arm.)
Put succinctly, a technique is a skill, and something technical requires skill — but not necessarily technology. Technology is a tool that embodies a technique, and tech is our perfect choice of abbreviation that efficiently confuses all three by consisting only of letters they all share. Confounding shorthand aside, these definitions place our brightly glowing screens in the full context of human tradition, as just the latest instance of getting skills to do things, then getting things to do those skills.
Republished from Ologologic.