Дифференциальный график в excel

По-моему, раньше я уже подобный график видел, что-то там было про гидролиз :-)  
Лишь прокомментирую несколько нюансов, вот пара замечаний к данным и методам вычисления:  
1. Неравномерная сетка означает доп. погрешность в определении производной  
2. В зоне максимума производной мало точек, это тоже добавляет погрешность в критической зоне.  

  Если нет возможности исправить замечания, то можно каким-либо методом интерполяции увеличить количество точек и сделать равномерную сетку, после чего вычислить производную любым численным методом  

  Например, применение интерполяции кубическим сплайном с шагом 100 и определение производной по 5 точкам даст результат, как  на приложенной картинке. Видно, что максимум при этом смещён относительно точек, имеющихся в исходных данных.  
Небольшой подъем производной в начале определяется выбранным методом интерполяции.  

  От метода интерполяции и вычисления производной, конечно же,  будет зависит и результат. Но так как здесь всё же не математический форум, а по excel, правильно было бы, если бы автор темы сам написал выбранные им формулы математического расчета, чтобы получить лишь помощь в их реализации в Excel. Хотя, с учетом качества исходных данных, можно смело применить любой из ранее предложенных в теме расчетов.

Вычисление производной в Excel методом численного дифференцирования с помощью конечных разностей. Практический пример вычисления производной второго порядка.

Минимум теории.

Производная определяет скорость изменения функции, описывающей какой-либо процесс во времени или в пространстве.

Предел отношения изменения в точке функции к изменению переменной при стремлении изменения переменной к нулю называется производной непрерывной функции.

y’(x)=lim (Δy/Δx)  при Δx→0

Геометрический смысл производной функции в точке – это тангенс угла наклона к оси x касательной к графику функции  в этой точке.

tg (α)=Δy/Δx

Если функция дискретная (табличная), то приближенное значение ее производной в точке находят с помощью конечных разностей.

y’(x)i≈(Δy/Δx)i=(yi+1yi-1)/(xi+1xi-1)

Конечными разности называют потому, что они имеют конкретное, измеримое, конечное значение в отличие от величин, стремящихся к нулю или бесконечности.

В таблице ниже представлен ряд формул, которые пригодятся при численном дифференцировании табличных функций.

Вычисление производной табличной функции-27s

Таблица формул производных-27s

Центрально-разностные формулы дают, как правило, более точные результаты, но часто их нельзя применить на краях диапазонов значений. Для этих случаев пригодятся приближения левыми и правыми конечными разностями.

Источник: http://al-vo.ru/spravochnik-excel/vychislenie-proizvodnoj-v-excel.html

WHOIS – проверка домена

Image Expired.ru
Список освобождающихся доменов в зоне .RU и .РФ, сервис перехвата доменов. Заявка на регистрацию домена подается через максимально возможный пул регистраторов, что значительно увеличивает ваши шансы.

Источник: http://uchi24.ru/rezhissery-prodyusery/naiti-proizvodnuyu-funkcii-v-eksel-graficheskoe-i-chislennoe-differencirovanie-algoritm-postroeniya-g/

dar-ptolemeya.jpgЧем может помочь Excel при вычислении производной функции? Если функция задана уравнением, то после аналитического дифференцирования и получения формулы Excel поможет быстро рассчитать значения производной для любых интересующих пользователя значений аргумента.

Если функция получена практическими измерениями и задана табличными значениями, то Excel может оказать в этом случае более существенную помощь при выполнении численного дифференцирования и последующей обработке и анализе результатов.

На практике задача вычисления производной методом численного дифференцирования может возникнуть и в механике (при определении скорости и ускорения объекта по имеющимся замерам пути и времени) и в теплотехнике (при расчете теплопередачи во времени). Это также может быть необходимо, например, при бурении скважин для анализа плотности проходимого буром слоя грунта, при решении целого ряда баллистических задач, и т. д.

Похожая ситуация имеет место при «обратной» задаче расчета сложно нагруженных балок, когда по прогибам возникает желание найти значения действующих нагрузок.

Во второй части статьи на «живом» примере рассмотрим вычисление производной по приближенной формуле численного дифференцирования с применением выражений в конечных разностях и разберемся в вопросе – можно ли используя приближения производных конечными разностями по прогибам балки определять действующие в сечениях нагрузки?

Источник: http://stroynietela.ru/kak-sdelat-proizvodnuyu-v-eksele/

Вычисление производной второго порядка на примере расчета моментов в сечениях балки по известным прогибам.

Дано:

На балку длиной 8 метров с шарнирными опорами по краям изготовленную из двух спаренных стальных (Ст3) двутавров 30М опираются 7 прогонов с шагом 1 метр. К центральной части балки крепится  площадка с оборудованием. Предположительно усилие от покрытия, передаваемое через прогоны на балку, во всех точках одинаково и равно F1. Подвесная площадка имеет вес 2*F2 и крепится к балке в двух точках.

Предполагается, что балка до приложения нагрузок была абсолютно прямой, а после нагружения находится в зоне упругих деформаций.

На рисунке ниже показана расчетная схема задачи и общий вид эпюр.

Расчетная схема и эпюры-27s

На следующем скриншоте представлены исходные данные.

Вычисление производной - таблица исходных данных-27s

Расчетные исходные данные:

3. Погонная масса двутавра 30М:

γ=50,2 кг/м

Сечение балки составлено из двух двутавров:

n=2

Удельный вес балки:

q=γ*n*g=50,2*2*9,81/1000=0,985 Н/мм

5. Момент инерции сечения двутавра 30М:

Ix1=95 000 000 мм4

Момент инерции составного сечения балки:

Ix=Ix1*n=95 000 000*2=190 000 000 мм4

10. Так как балка нагружена симметрично относительно своей середины, то реакции обеих опор одинаковы и равны каждая половине суммарной нагрузки:

R=(q*zmax+8*F1+2*F2)/2=(0,985*8000+8*9000+2*50000)/2=85 440 Н

В расчете учитывается собственный вес балки!

Задача:

Найти значения изгибающего момента Mxi в сечениях балки аналитически по формулам сопротивления материалов и методом численного дифференцирования расчетной линии прогибов. Сравнить и проанализировать полученные результаты.

Решение:

Первое, что мы сделаем, это выполним расчет в Excel поперечных сил Qy, изгибающих моментов Mx, углов поворота Ux оси балки и прогибов Vx по классическим формулам сопромата во всех сечениях с шагом h. (Хотя, в принципе, значения сил и углов нам в дальнейшем не понадобятся.)

Результаты вычислений находятся в ячейках I5-L54. На скриншоте ниже показана половина таблицы, так как значения во второй ее части зеркальны или аналогичны представленным значениям.

Вычисление производной в Excel - расчет 1-27s

Использованные в расчетах формулы можно посмотреть здесь.

Ссылка для скачивания файла с рассмотренным в статье примером: vychisleniye-proizvodnoy (xls 250,0KB).

Итак, нам известны точные значения моментов и прогибов.

Из теории мы знаем, что:

Угол поворота – это первая производная прогиба U=V’.

Момент – это вторая производная прогиба M=V’’.

Сила – это третья производная прогиба Q=V’’’.

Предположим, что столбец точных значений прогибов получен не аналитическими расчетами, а замерами на реальной балке и у нас больше нет никаких других данных. Вычислим вторые производные от точных значений прогибов, используя формулу (6) из таблицы предыдущего раздела статьи, и найдем значения моментов методом численного дифференцирования.

Mxi=Vy’’≈((Vi+1-2*Vi+Vi-1)/h2)*E*Ix

Итог расчетов мы видим в ячейках M5-M54.

Точные значения моментов, рассчитанные по аналитическим формулам сопромата с учетом веса самой балки, отличаются от найденных по приближенным формулам вычисления производных незначительно. Моменты определены весьма точно, судя по относительным погрешностям, рассчитанным в процентах в ячейках N5-N54.

ε=(MxVy’’)/Mx*100%

Поставленная задача решена. Мы выполнили вычисление производной второго порядка по приближенной формуле с использованием центральных конечных разностей и получили отличный результат.

Зная точные значения прогибов можно методом численного дифференцирования с высокой точностью найти действующие в сечениях моменты и определить степень нагруженности балки!

Источник: http://al-vo.ru/spravochnik-excel/vychislenie-proizvodnoj-v-excel.html

Метод касательных

Метод касательных основан на геометрической интерпретации производной. При использовании метода кинематических диаграмм вначале дифференцируется диаграмма перемещений для получения графика (диаграммы) скоростей. Рассмотрим графическое дифференцирование на этом примере.

V = ds/dt, но т.к. аналитическое выражение для перемещений в данном случае отсутствует, то представляем значения перемещений и времени через отрезки на диаграмме перемещений:

is-2285.png

is-2286.png

Но отношение бесконечно малого приращения функции к бесконечно малому приращению аргумента на графике представляет собой тангенс угла наклона касательной к данной кривой в рассматриваемой точке, т.е.

is-2287.png

Используя данное обстоятельство, диаграмму скоростей строят в следующем порядке (рисунок 11):

  • проводят касательные к диаграмме перемещений в намеченных положениях;
  • слева от начала координат на оси абсцисс будущей диаграммы скоростей отмечают полюс P на некотором расстоянии H (которое называется полюсным расстоянием);
  • из полюса проводят лучи, параллельные проведенным касательным на диаграмме перемещений. Эти лучи отсекают на оси ординат будущей диаграммы скоростей отрезки

Таким образом, и скорость в i-том положении и отрезки oi* пропорциональны tgαi , а значит отрезки oi* пропорциональны Vi (скорости исследуемого звена в соответствующем положении механизма), т.е. они представляют собой изображение скорости в виде отрезка в некотором масштабе – Vi.

is-2288.png

is-2289.png

is-2290.png

где Kv – масштаб диаграммы скоростей по оси ординат в (м/с)/мм.

Далее отрезки oi* переносят в соответствующие положения, отмеченные на оси абсцисс, и, соединив концы отрезков плавной кривой, получают диаграмму скоростей исследуемого звена. Аналогично строится диаграмма ускорений. При этом масштаб ускорений

is-2291.png

is-2292.png

Теоретически метод касательных самый точный из графических методов дифференцирования, т.к. дает значение мгновенной скорости (ускорения) именно в том положении, в котором проведена касательная.

Однако из-за трудности точного проведения касательных (и сама дифференцируемая кривая, построенная по точкам, имеет отклонения от ее теоретической функции), практическая точность этого метода весьма низкая, поэтому он используется редко (обычно когда надо проанализировать характер движения звена без получения конкретных численных результатов).

Источник: http://rg-gaming.ru/kompjutery/graficheskoe-differencirovanie-v-excel

Однако…

Увы, не стоит думать, что на практике легко получить необходимые высокоточные результаты измерений прогибов сложно нагруженных балок!

Дело в том, что измерения прогибов требуется выполнять с точностью ~1 мкм и стараться максимально уменьшать шаг замеров h, «устремляя его к нулю», хотя и это может не помочь избежать ошибок.

Зачастую уменьшение шага замеров при значительных погрешностях измерений прогибов может привести к абсурдным результатам. Следует быть очень внимательными при численном дифференцировании, чтобы избежать фатальных ошибок.

Сегодня есть приборы — лазерные интерферометры, обеспечивающие высокую скорость, стабильность и точность измерений до 1 мкм, программно отсеивающие шум, и еще много чего программно умеющие, но их цена – более 300 000$…

Давайте посмотрим, что произойдет, если мы просто округлим точные значения прогибов из нашего примера до двух знаков после запятой – то есть до сотых долей миллиметра и заново по той же формуле вычисления производной пересчитаем моменты в сечениях.

Вычисление производной в Excel - расчет 2-27s

Если раньше максимальная ошибка не превышала 0,7%, то сейчас (в сечении i=4) превышает 23%, хотя и остается приемлемой в наиболее опасном сечении (ε21=1,813%).

Кроме рассмотренного численного метода вычисления производных с помощью конечных разностей можно (а часто и нужно) применить другой способ — аппроксимировать замеры степенным многочленом и найти производные аналитически, а затем сверить результаты, полученные разными путями. Но следует понимать, что дифференцирование аппроксимационного степенного многочлена – это тоже в конечном итоге приближенный метод, существенно зависящий от степени точности аппроксимации.

Исходные данные – результаты измерений – в большинстве случаев перед использованием в расчетах следует обрабатывать, удаляя выбивающиеся из логического ряда значения.

Вычисление производной численными методами всегда необходимо выполнять очень осторожно!

Уважаемые читатели, отзывы и комментарии к статье, размещайте в специальном блоке ниже статьи.

Чтобы получать информацию о выходе новых статей на блоге, подпишитесь на анонсы в окне, расположенном вверху страницы или сразу после статьи.

Прошу УВАЖАЮЩИХ труд автора скачать файл с примером ПОСЛЕ ПОДПИСКИ на анонсы статей.

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Источник: http://al-vo.ru/spravochnik-excel/vychislenie-proizvodnoj-v-excel.html

Пример 3
: Отобрать с помощью автофильтра студентов, обучающихся в группе № 5433
с фамилией, начинающейся на букву С
.

Последовательность действий

1.
Скопировать базу данных (рис. 30) на Лист 3.

2.
Фамилия
.

3.
Выбрать из списка пункт
Текстовые фильтры → Настраиваемый фильтр
. В появившемся окне Пользовательский автофильтр
выбрать критерий отбора начинается с
, в поле напротив ввести нужную букву (проверить, чтобы раскладка была русскоязычная). Нажать ОК
.

4.
Открыть раскрывающийся список в столбце
№ группы
.

5.
Выбрать нужный номер.

Фильтрация записей в базе данных с помощью расширенного фильтра

Расширенный фильтр
позволяет отыскивать строки с помощью более сложных критериев, по сравнению с пользовательскими автофильтрами. Расширенный фильтр использует для фильтрации данных интервал критериев.

При использовании расширенного фильтра имена столбцов, по которым задаются условия, копируются ниже исходной таблицы. Под названиями столбцов вносятся критерии отбора. После применения фильтра на экране могут отображаться только те строки, которые удовлетворяют указанному критерию, а также отфильтрованные данные могут копироваться на другой лист или в другую область на том же рабочем листе.

Пример 4
: Выбрать всех студентов из группы № 5433
, у которых средний балл
больше либо равен 4,5
.

Последовательность действий

1.
Скопировать базу данных (рис. 30) на Лист 4.

2.
Скопировать названия столбцов
№ группы
и средний балл

в область ниже исходной таблицы. Под названиями столбцов ввести нужные критерии отбора (рис. 32)

Рис. 32. Окно Excel
с расширенным фильтром

2.
На вкладке
Данные
на панели инструментов Сортировка

и
фильтр
выбрать пункт Дополнительно
. Появится диалоговое окно (рис. 33), в котором указываются диапазоны данных.

Рис. 33. Окно расширенного фильтра

В
поле ввода
Исходный диапазон
указывается интервал, содержащий исходную базу данных. В нашем случае выделяется диапазон ячеек с А1
по I9
.

В
поле ввода
Диапазон условий
выделяется интервал ячеек на рабочем листе, который содержит требуемые критерии (С12:D13
).

В
поле ввода
Поместить результат в диапазон указывается интервал, в который копируются строки, удовлетворяющие кри-

териям. В нашем случае указывается ячейка ниже области критериев, например А16
. Это поле доступно только в том случае, когда выбран переключатель Скопировать результат в другое место
.

Флажок Только уникальные записи
предназначен для отображения только неповторяющихся строк.

Результирующая таблица, удовлетворяющая критериям фильтрации, представлена на рис. 34.

Рис. 34. Окно Excel
с результатами фильтрации

1.
Создать свою базу данных, количество записей в которой должно быть не менее 15, а количество столбцов – не менее 6. Например, база данных
Список клиентов
(рис. 35).

2.
К базе данных применить три автофильтра (на отдельных листах). Количество критериев должно быть не менее двух.

3.
Применить три расширенных фильтра к записям базы данных, каждый из которых должен содержать не менее двух критериев. Все расширенные фильтры разместить на одном листе под исходной таблицей.

Рис. 35. Окно Excel
с базой данных Список клиентов

ЛАБОРАТОРНАЯ РАБОТА № 5

Численное дифференцирование и простейший анализ функций

Цель работы
: Исследовать функцию на экстремум, научиться определять критическую точку.

Из курса математики известно, что формула производной в общем виде выглядит так:

f »
(x)= lim

Δx 0

где Δx
– приращение аргумента; x
– число, стремящееся к нулю. С помощью производной можно определить критические точки функции – минимумы, максимумы или перегибы. Если значение производной функции при каком-либо значении x
равно нулю, то при этом значении x
функция имеет критическую точку.

Пример 1
: Функция f x = x
2
+
2x 3 задана на интервале x
5;5 . Исследовать поведение функции f(x)
.

Последовательность действий

1.
Пусть
Δx =
0,00001. В ячейку A1
ввести: šDx=Ÿ (рис. 36). Выделить букву D, щёлкнуть правой кнопкой мыши по выделенной букве, выбрать Формат ячеек.
На вкладке Шрифт
выбрать шрифт Symbol
. Буква D превратится в греческую букву ѓў. Выравнивание в ячейке можно сделать по правому краю. В ячейку B1
внести значение 0,00001.

2.
В ячейках с
А2
по F2
оформить šшапкуŸ таблицы, как показано на рис. 36.

3.
В столбце
A
, начиная с третьей строки, будут содержаться значения x
. В ячейки с A3
по A13
ввести значения от –5 до 5.

4.
В ячейке
B3
записать формулу =A3^2+2*A3-3
и растянуть её до конечного значения x
(до 13-й строки).

5.
Чтобы определить производную функции и вычислить её значения на заданном интервале, необходимо сделать промежу-

точные вычисления. В ячейку С3
ввести формулу суммы аргумента x
и его приращения Δx
. Формула имеет вид: =A3+$B$1
. Растянуть её значение до конечного значения аргумента x
.

Рис. 36. Окно Excel
с исследованием поведения функции

6.
В ячейку
D3
записать формулу =C3^2+2*C3-3
, по которой вычисляется значение функции f
от аргумента x Δx
. Растянуть получившееся значение до конечного значения аргумента.

7.
В ячейку
E3
записать формулу производной (1), учитывая, что значения f x
находятся в B3
, а значения f x + Δx
в D3
.

Формула будет иметь вид: =(D3-B3)/$B$1
.

8. Определить поведение функции на заданном промежутке (возрастает, убывает или имеется критическая точка). Для этого необходимо в ячейку F3
самостоятельно записать формулу для определения поведения функции. Формула содержит три условия:

f» (x) < 0

– функция убывает;

f» (x) > 0

– функция возрастает;

f» (x)= 0

– имеется критическая точка*
.

9. Построить графики по значениям f x
и f» (x)
. На графике (рис. 37) видно, что если значение производной функции равно нулю, то в этом месте у функции критическая точка.

*
Из-за
слишком большой погрешности вычислений, значение f»(x)
может не быть равным 0. Но описать эту ситуацию всё равно необходимо.

Рис. 37. Диаграмма исследования поведения функции

Задания для самостоятельной работы

Функция f(x)
задана на интервале x
. Исследовать поведение функции f(x)
. Построить графики.

2x 2

X [ 4
;4
]

X [ 5
;5
]

2x +
2

f(x)= x3

3x 2

2 ,
x [ 2
;4
]

f(x)= x

X [ 2
;3
]

x 2
+ 7

ЛАБОРАТОРНАЯ РАБОТА № 6

Построение касательной к графику функции

Цель работы
: Освоить вычисление значений уравнения касательной к графику функции в точке x
0
.

Уравнение касательной к графику функции y = f(x)
в точке

Пример 1
: Функция y = x
2
+
2x 3 задана на интервале x [
5;
5 ]
. Построить касательную к графику этой функции в точке x
0
=
1.

Последовательность действий:

1. Продифференцировать численно эту функцию (см. Лабораторную работу №5). Таблица исходных данных показана на рис. 38.

Рис. 38. Таблица исходных данных

2. Определить в таблице местоположение x
, x
0
, f(x
0
)
и f» (x
0
)
. Очевидно, что в качестве x
будут выступать значения из

столбца A
, начиная с третьей строки (рис. 38). Если x
0
=
1, то в качестве x
0
будет выступать ячейка A9
. Соответственно, значение функции f
в точке x
0
находится в ячейке B9
, а значение f» (x
0
)


в ячейке
E9
.

3.
В столбце
F
рассчитывается уравнение касательной к графику функции f(x).
При расчёте уравнения (1) необходимо, чтобы значения x
0
, f(x
0
)
и f» (x
0
)
не изменялись. Поэтому в напи-

сании адреса ячеек A9
, B9
и E9
нужно использовать абсолютные ссылки на эти ячейки. Фиксация ячеек производится с помощью знака š$Ÿ. Ячейки будут иметь вид: $A$9
, $B$9
и $E$9
.

Рис. 39. График функции f(x)
и касательная к графику в точке x=1

Задания для самостоятельной работы

Функция f(x)
определена на интервале x
. Рассчитать уравнение касательной. Построить касательную к графику функции в заданной точке.

2x 2

X [ 4
;4
] ,
x0
= 1

X [ 5
;5
] ,
x0

2x +
2

f(x)= x3

3x 2

2 ,
x [ 2
;4
] ,
x0
= 0

f(x)= x

X [ 2
;3
] ,
x0

x 2
+ 7

1.
Веденеева, Е. А. Функции и формулы Excel 2007. Библиотека пользователя / Е. А. Веденеева. – СПб.: Питер, 2008. – 384 с.

2.
Свиридова, М. Ю. Электронные таблицы Excel / М. Ю. Свиридова. – М.:Academia, 2008. – 144 с.

3.
Серогодский, В. В. Графики, вычисления и анализ данных

в
Excel 2007 / В. В. Серогодский, Р. Г. Прокди, Д. А. Козлов, А. Ю. Дружинин. – М.: Наука и техника, 2009. – 336 с.

Известно, что численными приближенными методами производная функции в заданной точке может быть вычислена с использованием формулы конечных разностей. Выражение для вычисления производной функции одной переменной в точке х k записанное в конечных разностях, имеет вид

где Δх – очень малая конечная величина.

При достаточно малых значениях Δх, можно с приемлемой точностью получить величину производной функции в точке. Для вычисления производной в MS Excel будем использовать приведенную выше формулу. Рассмотрим технологию вычисления производной на примере
.

Пример 1.18
Найти производную функции у = 2х 3 + х 2 в точке х=3. Заметим, что производная приведенной функции в точке х=3, вычисленная аналитическим методом, равна 60 — это значение нам понадобится для проверки результата, полученного путем вычисления численным методом.

Задачу вычисления производной в табличном процессоре можно решать двумя способами.

Решение первым способом

Введем в ячейку рабочего листа формулу правой части заданной функциональной зависимости например в ячейку В2, как показано на рисунке, делая ссылку на ячейку, где будет находиться значение х, например А2,

2*А2 ^ 3+А2 ^ 2.

Зададим окрестность точки х=3 достаточно малого размера, например значение слева х k =2,9999999, а значение справа х k +1 =3,00000001, и введем эти значения в ячейку А2 и А3 соответственно. В ячейку С2 введем формулу вычисления производной =(В3-В2)/(А3-А2).

В результате вычисления в ячейку С2 будет выведено приближенное значение производной заданной функции в точке х=3, величина которой равна 60, что соответствует результату, полученному аналитически (рис.1.24).

Решение вторым способом

Введем в ячейку рабочего листа А2 заданное значение аргумента, равное 3, в ячейке В2 укажем достаточно малое приращение аргумента — (1E — 9), в ячейку С2 введем формулу для вычисления производной

=(2*(А2+В2) ^ 3+(А2+В2) ^ 2-(2*А2 ^ 3+А2 ^ 2))/В2.

После нажатия клавиши получим результат вычисления 60,0000.

Как видим, результат получен такой же, как и при первом способе. Приведенный второй способ является более предпочтительным в случаях, когда нужно построить таблицу значений производной функции для заданных значений аргумента.

Вычисление локальных экстремумов функции

Напомним, что функция Y=f(x) имеет экстремум при значении х = х k если производная функции в этой точке равна нулю.

Если функция f(x) непрерывна на отрезке [а, b] и имеет внутри этого отрезка локальный экстремум, то его можно найти, используя надстройку Excel Поиск решения.

Рассмотрим последовательность нахождения экстремума функции на примере

Пример 1.19
Задана неразрывная функция у = х 2 + х + 2. Требуется найти ее экстремум (минимальное значение) на отрезке [-2; 2].

Решение

В ячейку A3 рабочего листа введем любое число, принадлежащее заданному отрезку, в этой ячейке будет находиться значение х.

В ячейку В3 введем формулу, определяющую заданную функциональную зависимость. Вместо переменной х в этой формуле должна быть ссылка на ячейку А3: =А3^2+A3+2.

Выполним команду меню Сервис/Поиск решения.

В открывшемся окне диалога Поиск решения в поле Установить целевую ячейку укажем адрес ячейки, содержащей формулу (В3), установим переключатель Минимальному значению, в поле Измени ячейки укажем адрес ячейки, в которой содержится переменная х-A3.

Добавим два ограничения в соответствующее поле: A3 > = — 2 и A3<=2 (рис. 1.25).

Щелкнем на кнопке Параметры и в открывшемся диалоговом окне параметры поиска решения установим относительную погрешность вычислений и предельное число итераций.

Щелкнем на кнопке Выполнить. В ячейке А3 будет вычислено значение аргумента х функции, при котором она принимает минимальное значение, а в ячейке В3 – минимальное значение функции.

В результате выполнения вычислений в ячейке А3 будет получено значение независимой переменной, при котором функция принимает наименьшее значение -0,5, а в ячейке В3 – минимальное значение, равное 1,75.

Построим график заданной функции и убедимся, что решение уравнения найдено, верно.

Примечание.
В частном случае при нахождении локального экстремума с использованием рассмотренной технологии, можно получить значение, которое не является экстремумом, а просто является минимумом или максимумом функции в заданном диапазоне изменения аргумента.

Поэтому необходима дополнительная проверка, т.е. вычисление производной функции в найденной точке.

Используя приведенную технологию численного вычисления производной функции в заданной точке, проверим, является ли найденная точка х = -0,5 точкой экстремума функции у = х 2 + х + 2. Решение приведено на рисунке.

Как видно, производная в найденной точке равна нулю, следовательно, найденное значение функции является ее экстремальным значением.

Пример 1.20
Требуется найти значения аргумента в диапазоне [-1; 1], при которых функция у = х 2 + х + 2 имеет экстремумы.

Решение

Табулируем заданную функцию с шагом 0,2.

Применяя второй из приведенных способов вычисления производной, вычислим значения функции у = f(x + dx).

Вычислим значения производной при каждом табличном значении аргумента.

Анализируя полученные значения производных функции в точках, находим, что производная меняет знак в интервале значений аргумента (-0,6;-0,4), следовательно, на этом интервале есть точка экстремума. Кроме того, заметим, что знак производной меняется с минуса на плюс, следовательно, точка экстремума является минимумом функции.

Применяя инструмент Подбор параметра
или Поиск
решения для решения уравнения Y(x) = 0

относительно х, вычислим точное значение аргумента, при котором исходная функция принимает экстре малыше значение (-0,5) (рис. 1.26).

Полученное значение производной исследуемой функции в точке
х =-0,5 равно нулю, следовательно, в этой точке функция имеет экстремум.

Численное дифференцирование

Раздел № 5

Задача приближенного вычисления производной мо­жет возникнуть в тех случаях, когда неизвестно анали­тическое выражение для исследуемой функции. Функ­ция может быть задана таблично, или известен только график функции, полученный, например, в результате показаний датчиков параметров технологического про­цесса.

Иногда, при решении некоторых задач на компьюте­ре, из-за громоздкости выкладок может оказаться более удобным вычисление производных численным методом, чем аналитическим. При этом, разумеется, необходимо обосновать применяемый численный метод, т. е. убедить­ся в том, что погрешность численного метода находится в приемлемых границах.

Одним из эффективных методов решения дифференци­альных уравнений является разностный метод, когда вместо искомой функции рассматривается таблица ее значений в определенных точках, при этом производные приближенно заменяются разностными формулами.

Пусть известен график функции у = f
(х
) на отрезке [а
,b
].Можно построить график производной функции, вспомнив ее геометрический смысл. Воспользуемся тем фактом, что производная функции в точке х
равна тан­генсу угла наклона к оси абсцисс касательной к ее графи­ку в этой точке.

Если х = х
0 ,найдем у
0 = f
(x
0)с помощью графика и затем проведем касательную АВ
к графику функции в точке (х
0 , y
0) (рис. 5.1). Проведем прямую, параллельную касательной АВ,
через точку (-1, 0) и найдем точку у
1 ее пересечения с осью ординат. Тогда значение у
1 равно тан­генсу угла наклона касательной к оси абсцисс, т. е. про­изводной функции f
(x
)в точке х
0:

у
1 = =
tgα = f
¢ (x
0),
и точка М
0 (х
0 , у
1) принадлежит графику производной.

Чтобы построить график производной, необходимо разбить отрезок [а
, b
]на несколько частей точками х i
, затем для каждой точки графически построить значение производной и соединить полученные точки плавной кри­вой с помощью лекал.

На рис. 5.2 показано построение пяти точек М
1, М
2 ,… , М
5 и графика производной.

Алгоритм построения графика производной:

1. Строим касательную к графику функции у
= f
(x
)в точке (х
1 , f
(x
1));из точки (-1, 0) параллельно касатель­ной в точке (х
1 , f
(x
1)) проведем прямую до пересечения с осью ординат; эта точка пересечения дает значение про­изводной f
¢ (х
1).Строим точку М
1 (х
1 , f
¢ (х
1)).

2. Аналогично построим остальные точки М
2 , М
3 , М
4 и М
5 .

3. Соединяем точки М
1 , М
2 , М
3 , М
4 , М
5 плавной кривой.

Полученная кривая является графиком производной.

Точность графического способа определения производ­ной невысока. Мы приводим описание этого способа толь­ко в учебных целях.

Замечание
. Если в алгоритме построения графика производ­ной вместо точки (-1, 0) взять точку (-l
,0), где l
> 0, то график будет построен в другом масштабе по оси ординат.

5
.
2

.Разностные формулы

а) Разностные формулы для обыкновенных производных

Разностные формулы для приближенного вычисления производной подсказаны самим определением производной. Пусть значения функции в точках x i
обозначены через y i
:

y i
= f
(x i
), x i = a+ ih
, i =
0, 1, … , n; h
=

Мы рассматриваем случай равномерного распределения точек на отрезке [a
, b
]. Для приближенного вычисления производных в точках x i
можно использовать следующие разностные формулы

,
или разностные производные

.

Так как предел отношения (5.1) при h
® 0 равен пра­вой производной в точке х i
, то это отношение иногда на­зывают правой разностной производной

в точке x i
.По аналогичной причине отношение (5.2) называют левой разностной производной

в точке x i
.Отношение (5.3) на­зывают центральной разностной производной

в точке x i
.

Оценим погрешность разностных формул (5.1)–(5.3), предполагая, что функция f
(x
) разлагается в ряд Тейло­ра в окрестности точки x i
:

f
(x
) = f
(x i
)+ . (5.4)

Полагая в (5.4) х
= x i
+ h
или х = х i
h
, получим

Непосредственной подстановкой разложений (5.5) и (5.6) в формулу (5.10) можно получить зависимость между второй производной функции и разностной формулой для производной второго порядка

.

Чем может помочь Excel при вычислении производной функции? Если функция задана уравнением, то после аналитического дифференцирования и получения формулы Excel поможет быстро рассчитать значения производной для любых интересующих пользователя значений аргумента.

Если функция получена практическими измерениями и задана табличными значениями, то Excel может оказать в этом случае более существенную помощь при выполнении численного дифференцирования и последующей обработке и анализе результатов.

На практике задача вычисления производной методом численного дифференцирования может возникнуть и в механике (при определении скорости и ускорения объекта по имеющимся замерам пути и времени) и в теплотехнике (при расчете теплопередачи во времени). Это также может быть необходимо, например, при бурении скважин для анализа плотности проходимого буром слоя грунта, при решении целого ряда баллистических задач, и т. д.

Похожая ситуация имеет место при «обратной» задаче расчета сложно нагруженных балок, когда по прогибам возникает желание найти значения действующих нагрузок.

Во второй части статьи на «живом» примере рассмотрим вычисление производной по приближенной формуле численного дифференцирования с применением выражений в конечных разностях и разберемся в вопросе – можно ли
используя приближения производных конечными разностями по прогибам балки определять действующие в сечениях нагрузки?

Минимум теории.

Производная определяет скорость изменения функции, описывающей какой-либо процесс во времени или в пространстве.

Предел отношения изменения в точке функции к изменению переменной при стремлении изменения переменной к нулю называется производной непрерывной функции.

y’
(x
)=lim (Δy
/Δx
)
при Δx
→0

Геометрический смысл производной функции в точке – это тангенс угла наклона к оси x касательной к графику функции в этой точке.

tg (α
)=Δy
/Δx

Если функция дискретная (табличная), то приближенное значение ее производной в точке находят с помощью конечных разностей.

y’
(x
) i
≈(Δy
/Δx) i

=(y i +1
-y i -1
)/(x i +1
-x i -1
)

Конечными разности называют потому, что они имеют конкретное, измеримое, конечное значение в отличие от величин, стремящихся к нулю или бесконечности.

В таблице ниже представлен ряд формул, которые пригодятся при численном дифференцировании табличных функций.

Центрально-разностные формулы дают, как правило, более точные результаты, но часто их нельзя применить на краях диапазонов значений. Для этих случаев пригодятся приближения левыми и правыми конечными разностями.

Вычисление производной второго порядка на примере расчета моментов в сечениях балки по известным прогибам.

Дано:

На балку длиной 8 метров с шарнирными опорами по краям изготовленную из двух спаренных стальных (Ст3) двутавров 30М опираются 7 прогонов с шагом 1 метр. К центральной части балки крепится площадка с оборудованием. Предположительно усилие от покрытия, передаваемое через прогоны на балку, во всех точках одинаково и равно F 1

. Подвесная площадка имеет вес 2*F 2

и крепится к балке в двух точках.

Предполагается, что балка до приложения нагрузок была абсолютно прямой, а после нагружения находится в зоне упругих деформаций.

На рисунке ниже показана расчетная схема задачи и общий вид эпюр.

На следующем скриншоте представлены исходные данные.

Расчетные исходные данные:

3.
Погонная масса двутавра 30М:

γ
=50,2 кг/м

Сечение балки составлено из двух двутавров:

n
=2

Удельный вес балки:

q

*n
*g
=50,2*2*9,81/1000=0,985 Н/мм

5.
Момент инерции сечения двутавра 30М:

I x1
=95 000 000 мм 4

Момент инерции составного сечения балки:

I x
=I x 1
*n
=95 000 000*2=190 000 000 мм 4

10.
Так как балка нагружена симметрично относительно своей середины, то реакции обеих опор одинаковы и равны каждая половине суммарной нагрузки:

R
=(q
*z max
+8*F 1
+2*F 2
)/2=(0,985*8000+8*9000+2*50000)/2=85 440 Н

В расчете учитывается собственный вес балки!

Задача:

Найти значения изгибающего момента M xi

в сечениях балки аналитически по формулам сопротивления материалов и методом численного дифференцирования расчетной линии прогибов. Сравнить и проанализировать полученные результаты.

Решение:

Первое, что мы сделаем, это выполним расчет в Excel поперечных сил Q y

, изгибающих моментов M x

, углов поворота U x

оси балки и прогибов V x

по классическим формулам сопромата во всех сечениях с шагом h

. (Хотя, в принципе, значения сил и углов нам в дальнейшем не понадобятся.)

Результаты вычислений находятся в ячейках I5-L54. На скриншоте ниже показана половина таблицы, так как значения во второй ее части зеркальны или аналогичны представленным значениям.

Использованные в расчетах формулы можно посмотреть .

Итак, нам известны точные значения моментов и прогибов.

Из теории мы знаем, что:

Угол поворота – это первая производная прогиба U
=V’

.

Момент – это вторая производная прогиба M
=V’’

.

Сила – это третья производная прогиба Q
=V’’’

.

Предположим, что столбец точных значений прогибов получен не аналитическими расчетами, а замерами на реальной балке и у нас больше нет никаких других данных. Вычислим вторые производные от точных значений прогибов, используя формулу (6) из таблицы предыдущего раздела статьи, и найдем значения моментов методом численного дифференцирования.

M xi
=V y ’’
≈((V i +1
-2*V i
+V i -1
)/h
2)*E
*I x

Итог расчетов мы видим в ячейках M5-M54.

Точные значения моментов, рассчитанные по аналитическим формулам сопромата с учетом веса самой балки, отличаются от найденных по приближенным формулам вычисления производных незначительно. Моменты определены весьма точно, судя по относительным погрешностям, рассчитанным в процентах в ячейках N5-N54.

ε
=(M x
-V y ’’
)/M x
*100%

Поставленная задача решена. Мы выполнили вычисление производной второго порядка по приближенной формуле с использованием центральных конечных разностей и получили отличный результат.

Зная точные
значения прогибов можно методом численного дифференцирования с высокой точностью найти действующие в сечениях моменты и определить степень нагруженности балки!

Однако…

Увы, не стоит думать, что на практике легко получить
необходимые высокоточные результаты измерений прогибов сложно нагруженных балок!

Дело в том, что измерения прогибов требуется выполнять с точностью ~1 мкм и стараться максимально уменьшать шаг замеров h

, «устремляя его к нулю», хотя и это может не помочь избежать ошибок.

Зачастую уменьшение шага замеров при значительных погрешностях измерений прогибов может привести к абсурдным результатам. Следует быть очень внимательными при численном дифференцировании, чтобы избежать фатальных ошибок.

Сегодня есть приборы — лазерные интерферометры, обеспечивающие высокую скорость, стабильность и точность измерений до 1 мкм, программно отсеивающие шум, и еще много чего программно умеющие, но их цена – более 300 000$…

Давайте посмотрим, что произойдет, если мы просто округлим точные значения прогибов из нашего примера до двух знаков после запятой – то есть до сотых долей миллиметра и заново по той же формуле вычисления производной пересчитаем моменты в сечениях.

Если раньше максимальная ошибка не превышала 0,7%, то сейчас (в сечении i

=4) превышает 23%, хотя и остается приемлемой в наиболее опасном сечении (ε 21

=1,813%).

Кроме рассмотренного численного метода вычисления производных с помощью конечных разностей можно (а часто и нужно) применить другой способ — замеры степенным многочленом и найти производные аналитически, а затем сверить результаты, полученные разными путями. Но следует понимать, что дифференцирование аппроксимационного степенного многочлена – это тоже в конечном итоге приближенный метод, существенно зависящий от степени точности аппроксимации.

Исходные данные – результаты измерений – в большинстве случаев перед использованием в расчетах следует обрабатывать, удаляя выбивающиеся из логического ряда значения.

Вычисление производной численными методами всегда необходимо выполнять очень осторожно!

Уважаемые читатели, отзывы и комментарии к статье, размещайте в специальном блоке ниже статьи.

Чтобы получать информацию о выходе новых статей на блоге, подпишитесь на анонсы в окне, расположенном вверху страницы или сразу после статьи.

Прошу

УВАЖАЮЩИХ



труд автора скачать файл с примером


ПОСЛЕ ПОДПИСКИ



на анонсы статей.

Для решения многих инженерных задач часто требуется вычисление производных. Когда есть формула, описывающая процесс, сложностей никаких нет: берем формулу и вычисляем производную, как учили еще в школе, находим значения производной в разных точках, и всё. Сложность, наверное, только в этом и состоит, чтобы вспомнить, как вычислять производные. А как быть, если у нас есть только несколько сотен или тысяч строк с данными, а никакой формулы нет? Чаще всего именно так на практике и бывает. Предлагаю два способа.

Первый заключается в том, что мы наш набор точек аппроксимируем стандартной функцией Excel, то есть подбираем функцию, которая лучше всего ложится на наши точки (в Excel это линейная функция, логарифмическая, экспоненциальная, полиномиальная и степенная). Второй способ – численное дифференцирование, для которого нам нужно будет только умение вводить формулы.

Вспомним, что такое производная вообще:

Производной функции f (x) в точке x называется предел отношения приращения Δf функции в точке x к приращению Δx аргумента, когда последнее стремится к нулю:

Вот и воспользуемся этим знанием: будем просто брать для расчета производной очень маленькие значения приращения аргумента, т.е. Δx.

Для того, чтобы найти приближённое значение производной в нужных нам точках (а у нас точки – это различные значения степени деформации ε) можно поступить вот как. Посмотрим еще раз на определение производной и видим, что при использовании малых значений приращения аргумента Δε (то есть малых приращений степени деформации, которые регистрируются при испытаниях) можно заменить значение реальной производной в точке x 0 (f’(x 0)=dy/dx (x 0)) на отношение Δy/Δx=(f (x 0 + Δx) – f (x 0))/Δx.

То есть вот что получается:

f’(x 0) ≈(f (x 0 + Δx) – f (x 0))/Δx (1)

Для вычисления этой производной в каждой точке мы производим вычисления с использованием двух соседних точек: первая с координатой ε 0 по горизонтальной оси, а вторая с координатой x 0 + Δx, т.е. одна – производную в которой вычисляем и та, что поправее. Вычисленная таким образом производная называется разностной производной вправо (вперед) с шагом
Δ
x
.

Можем поступить наоборот, взяв уже другие две соседние точки: x 0 — Δx и x 0 , т.е интересующую нас и ту, что левее. Получаем формулу для вычисления разностной производной влево (назад) с шагом —
Δ
x
.

f’(x 0) ≈(f (x 0) – f (x 0 — Δx))/Δx (2)

Предыдущие формулы были «левые» и «правые», а есть еще одна формула, которая позволяет вычислять центральную разностною производную
с шагом 2 Δx, и которая чаще других используется для численного дифференцирования:

f’(x 0) ≈(f (x 0 + Δx) – f (x 0 — Δx))/2Δx (3)

Для проверки формулы рассмотрим простой пример с известной функцией y=x 3 . Построим таблицу в Excel с двумя с столбцами: x и y, а затем построим график по имеющимся точкам.

Производная функции y=x 3 это y=3x 2 , график которой, т.е. параболу, мы и должны получить с использованием наших формул.

Попробуем вычислить значения центральной разностной производной в точках х. Для этого. В ячейке второй строки нашей таблицы забиваем нашу формулу (3), т.е. следующую формулу в Excel:

Теперь строим график с использованием уже имеющихся значений х и полученных значений центральной разностной производной:

А вот и наша красненькая парабола! Значит, формула работает!

Ну а теперь можем перейти к конкретной инженерной задаче, про которую говорили в начале статьи – к нахождению изменения dσ/dε с увеличением деформации. Первая производная кривой «напряжение-деформация» σ=f (ε) в зарубежной литературе называется «скорость упрочнения» (strain hardening rate),а в нашей – «коэффициент упрочнения». Итак, в результате испытаний мы имеем массив данных, которой состоит из двух столбцов: один — со значениями деформаций ε и другой – со значениями напряжений σ в МПа. Возьмем холодную деформацию стали 1035 или наша 40Г (см. таблицу аналогов сталей) при 20°С.

C Mn P S Si N
0.36 0.69 0.025 0.032 0.27 0.004

Вот наша кривая в координатах «истинное напряжение — истинная деформация» σ-ε:



Действуем так же, как и в предыдущем примере и получаем вот такую кривую:

Это и есть изменение скорости упрочнения по ходу деформации. Что с ней делать, это уже отдельный вопрос.


Составим в MS EXCEL график погашения кредита дифференцированными платежами.

При расчете графика погашения кредита дифференцированными платежами сумма основного долга делится на равные части пропорционально сроку кредитования. Регулярно, в течение всего срока погашения кредита, заемщик выплачивает банку эти части основного долга плюс начисленные на его остаток проценты. Если кредитным договором период погашения установлен равным месяцу, то из месяца в месяц сумма основного долга пропорционально уменьшается. Поэтому при дифференцированных платежах основные расходы заемщик несет в начале кредитования, размеры ежемесячных платежей в этот период самые большие. Но постепенно, с уменьшением остатка ссудной задолженности, уменьшается и сумма начисленных процентов по кредиту. Выплаты по кредиту значительно сокращаются и становятся не такими обременительными для заемщика.


Примечание

. При расчете кредита дифференцированными платежами сумма переплаты по процентам будет ниже, чем при

аннуитетных платежах

. Не удивительно, что сегодня практически все российские банки применяют в расчетах аннуитетную схему погашения кредита. Сравнение двух графиков погашения кредита приведено в статье

Сравнение графиков погашения кредита дифференцированными аннуитетными платежами в MS EXCEL

.

График погашения кредита дифференцированными платежами


Задача

. Сумма кредита =150т.р. Срок кредита =2 года, Ставка по кредиту = 12%. Погашение кредита ежемесячное, в конце каждого периода (месяца).

Решение. Сначала вычислим часть (долю) основной суммы кредита, которую заемщик выплачивает за период: =150т.р./2/12, т.е. 6250р. (сумму кредита мы разделили на общее количество периодов выплат =2года*12 (мес. в году)). Каждый период заемщик выплачивает банку эту часть основного долга плюс начисленные на его остаток проценты. Расчет начисленных процентов на остаток долга приведен в таблице ниже – это и есть график платежей.

Для расчета начисленных процентов может быть использована функция ПРОЦПЛАТ(ставка;период;кпер;пс), где Ставка — процентная ставка

за период

;

Период

– номер периода, для которого требуется найти величину начисленных процентов;

Кпер

— общее число периодов начислений;

ПС

приведенная стоимость

на текущий момент (для кредита ПС — это сумма кредита, для вклада ПС – начальная сумма вклада).


Примечание

. Не смотря на то, что названия аргументов совпадают с названиями аргументов

функций аннуитета



ПРОЦПЛАТ()

не входит в группу этих функций (не может быть использована для расчета параметров аннуитета).


Примечание

. Английский вариант функции — ISPMT(rate, per, nper, pv)

Функция

ПРОЦПЛАТ()

предполагает начисление процентов

в начале каждого периода

(хотя в справке MS EXCEL это не сказано). Но, функцию можно использовать для расчета процентов, начисляемых и в конце периода для это нужно записать ее в виде ПРОЦПЛАТ(ставка;период-1;кпер;пс), т.е. «сдвинуть» вычисления на 1 период раньше (см.

файл примера

). Функция

ПРОЦПЛАТ()

начисленные проценты за пользование кредитом указывает с противоположным знаком, чтобы отличить денежные потоки (если выдача кредита – положительный денежный поток («в карман» заемщика), то регулярные выплаты – отрицательный поток «из кармана»).


Расчет суммарных процентов, уплаченных с даты выдачи кредита

Выведем формулу для нахождения суммы процентов, начисленных за определенное количество периодов с даты начала действия кредитного договора. Запишем суммы процентов начисленных в первых периодов (начисление и выплата в конце периода): ПС*ставка (ПС-ПС/кпер)*ставка (ПС-2*ПС/кпер)*ставка (ПС-3*ПС/кпер)*ставка … Просуммируем полученные выражения и, используя формулу суммы арифметической прогрессии, получим результат. =ПС*Ставка* период*(1 — (период-1)/2/кпер) Где, Ставка – это процентная ставка за период (=годовая ставка / число выплат в году), период – период, до которого требуется найти сумму процентов. Например, сумма процентов, выплаченных за первые полгода пользования кредитом (см. условия задачи выше) = 150000*(12%/12)*6*(1-(6-1)/2/(2*12))=8062,50р. За весь срок будет выплачено =ПС*Ставка*(кпер+1)/2=18750р. Через функцию

ПРОЦПЛАТ()

формула будет сложнее: =СУММПРОИЗВ(ПРОЦПЛАТ(ставка;СТРОКА(ДВССЫЛ(«1:»&кпер))-1;кпер;-ПС))

Обзор методов решения в Excel

Введение

Уравнение называется обыкновенным дифференциальным n-го порядка, если F определена и непрерывна в некоторой области и, во всяком случае, зависит от . Его решением является любая функция u(x), которая этому уравнению удовлетворяет при всех x в определённом конечном или бесконечном интервале. Дифференциальное уравнение, разрешенное относительно старшей производной имеет вид

Решением этого уравнения на интервале I=[a,b] называется функция u(x).

Решить дифференциальное уравнение у / =f(x,y) численным методом — это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что уi=F(xi)(i=1,2,…, n) и F(x0)=y0.

Таким образом, численные методы позволяют вместо нахождения функции y=F(x) (3) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Метод Эйлера для обыкновенных дифференциальных уравнений используется для решений многих задач естествознания в качестве математической модели. Например задачи электродинамики системы взаимодействующих тел (в модели материальных точек), задачи химической кинетики, электрических цепей. Ряд важных уравнений в частных производных в случаях, допускающих разделение переменных, приводит к задачам для обыкновенных дифференциальных уравнений – это, как правило, краевые задачи (задачи о собственных колебаниях упругих балок и пластин, определение спектра собственных значений энергии частицы в сферически симметричных полях и многое другое)

Обзор методов решения в Excel

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

Идея Рунге-Кута состоит в том, чтобы использовать метод неопределённых коэффициентов. Наиболее употребительным методом Рунге-Кутта решения уравнения первого порядка y’ = F(x,y) (1) является метод четвертого порядка, в котором вычисления производятся по формуле:

yk+1 = yk +(k1 +2k2 +2k3 +k4 )/6, (2)

k1 = Fk h = F(xk , yk )h

Рассмотрим задачу Коши для уравнений первого порядка на отрезке [a,b]:

, (4)

Разобьём промежуток [a,b] на N частей . Обозначим , где u(x) –точное решение задачи Коши, и через значения приближенного решения в точках . Существует 2 типа численных схем :

1. явные: ) (5)

2. неявные: (6)

Здесь F некоторая функция, связывающая приближения. В явных схемах приближенное значение в точке определяется через некоторое число k уже определённых приближенных значений. В неявных схемах определяется не рекурентным способом, как в явных схемах, а для его определения возникает уравнение, поскольку равенство (6) представляет из себя именно уравнение на . Явные схемы проще, однако зачастую неявные схемы предпочтительнее

1.3 Метод Эйлера

Решить дифференциальное уравнение у / =f(x,y) численным методом — это значит для заданной последовательности аргументов х0, х1…, хn и числа у0, не определяя функцию у=F(x), найти такие значения у1, у2,…, уn, что

Таким образом, численные методы позволяют вместо нахождения функции У=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk-xk-1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Рассмотрим дифференциальное уравнение первого порядка (7) с начальным условием

Требуется найти решение уравнения (7) на отрезке [а,b].

Разобьем отрезок [a, b] на n равных частей и получим последовательность х0, х1, х2,…, хn, где xi=x0+ih (i=0,1,…, n), а h=(b-a)/n-шаг интегрирования.

В методе Эйлера приближенные значения у(хi)»yi вычисляются последовательно по формулам уi+hf(xi, yi) (i=0,1,2…).

При этом искомая интегральная кривая у=у(х), проходящая через точку М00, у0), заменяется ломаной М0М1М2… с вершинами Мi(xi, yi) (i=0,1,2,…); каждое звено МiMi+1 этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (7), которая проходит через точку Мi. Если правая часть уравнения (7) в некотором прямоугольнике R<|x-x0|£a, |y-y0|£b>удовлетворяет условиям:

|df/dx|=|df/dx+f(df/dy)| £ M (M=const),

то имеет место следующая оценка погрешности:

где у(хn)-значение точного решения уравнения (7) при х=хn, а уn— приближенное значение, полученное на n-ом шаге.

Формула (13) имеет в основном теоретическое применение. На практике иногда оказывается более удобным двойной просчет: сначала расчет ведется с шагом h, затем шаг дробят и повторный расчет ведется с шагом h/2. Погрешность более точного значения уn * оценивается формулой

Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.

1.4 Модифицированный метод Эйлера

Рассмотрим дифференциальное уравнение (7) y / =f(x,y) с начальным условием y(x0)=y0. Разобьем наш участок интегрирования на n равных частей. На малом участ интегральную кривую заменим прямой линией.

Рисунок 1 Метод Эйлера в графическом виде

Получаем точку Мккк). Через Мк проводим касательную:

Получаем точку Nk / . В этой точке строим следующую касательную:

Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1. Получаем точку Мк / . В качестве ук+1 принимаем ординату точки Мк / . Тогда:

(14)-рекурентные формулы метода Эйлера.

Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2, затем находят значение правой части уравнения (11) в средней точке y / k+1/2=f(xk+1/2, yk+1/2) и определяют ук+1.

Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:

где у(х)-точное решение дифференциального уравнения.

Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y // =f(y / ,y,x) c начальными условиями y / (x0)=y / 0, y(x0)=y0, выполняется замена

Тем самым преобразуются начальные условия

1.5 Практическая часть

Здесь решается уравнение dy/dx = 2x-y+x 2 на интервале [0,2], начальное значение y(0)=0, для оценки точности задано также точное решение в виде функции u(x)=x 2 . Оценка погрешности делается в нормеL1, как и принято в данном случае

Численное решение дифференциальных уравнений в excel

Pers.narod.ru. Обучение. Excel: Решение обыкновенных дифференциальных уравнений (задача Коши)

Решение обыкновенных дифференциальных уравнений (ОДУ) — популярный раздел численных методов, немного теории можно почитать здесь.

В приведённом примере решается задача Коши, то есть, ищется решение дифференциального уравнения первого порядка вида dy/dx = f(x,y) на интервале x ∈ [x0,xn] при условии y(x0)=y0 и равномерном шаге сетки по x .

Решение выполняется методами Эйлера, «предиктор-корректор» (он же модифицированный метод Эйлера) и методом Рунге-Кутта 4 порядка точности. Пример может служить образцом для Ваших решений, правда, функцию придётся перепрограммировать несколько раз при различных значениях аргумента — поскольку без применения макросов на VBA Excel не позволяет создать полноценную функцию, которую было бы удобно вызывать с разными значениями аргументов.

Здесь решается уравнение dy/dx = 2x-y+x 2 на интервале [0,2] , начальное значение y(0)=0 , для оценки точности задано также точное решение в виде функции u(x)=x 2 . Оценка погрешности делается в норме L1 , как и принято в данном случае.

Скачать пример в Excel XP/2003 (28 Кб)

Рунге-Кутта VBA EXCEL

Решение дифференциальных уравнений первого порядка
методом Рунге-Кутта.

Данный проект VBA позволяет решать дифференциальные уравнения первого порядка одним из численных методов, а именно, методом Рунге-Кутта.

Исходные данные:

  • границы интервала a и b;
  • шаг интегрирования h;
  • начальное значение для решения y(a), позволяющее правильно определить константу…

вводятся в соответствующие ячейки столбца «J».

И самое главное (самая ответственная часть) необходимо без ошибок ввести формулу в ячейку «D3». Эта формула получается из заданного уравнения и представляет функцию, являющуюся производной от решения. Ее параметрами может быть как только х (т.е. ячейка «D4»), так и х совместно с у (т.е. ячейкой «D5»). На рисунке показан пример ввода формулы для заданного уравнения…
В ячейки «D4» и «D5» вводить ничего не нужно… Туда значения будет подставлять макрос…

Если не удалось запустить видео, воспользуйтесь этой ссылкой . видео на YouTube

После этого остается нажать кнопку «Решить» и … если Вы не забыли включить макросы, то увидите, быстро меняющиеся текущие значения в ячейках столбца «D», а после окончания цикла расчета значений у, произойдет изменение графиков.

Графики должны быть построены на заданном Вами интервале (на рисунке от -0,4 до 1,25)…
В каждой точке, где производная (график синего цвета) пересекает ось , функция решения(красная) должна иметь экстремум (максимум или минимум)…
Если терпением Вы не отличаетесь, то не задавайте очень длинный интервал и/или очень мелкий шаг…

Подсказка:
Собственно, процедура заполнения массивов х и у по методу Рунге-Кутта будет выглядеть так:
(при этом глобальная переменная D3formula предварительно инициализируется: D3formula = Range(«D3»).Formula)

Private Function func(x As Double, y As Double) As Double ‘производная
Dim f As String
‘функция вычисляется по формуле, введенной пользователем в ячейку D3 (гед D4 — это x, D5 — это y)
f = Replace(D3formula, «D4», CStr(x))
f = Replace(f, «D5», CStr(y))
Range(«D3»).FormulaLocal = f
func = Range(«D3»)
End Function

Sub MethodRungeKutta()
‘вспомогательные переменные
Dim k1 As Double, k2 As Double, k3 As Double, k4 As Double
Dim i As Integer

For i = 1 To n ‘нулевые значения уже есть

x(i) = x(0) + i * h
k1 = func(x(i — 1), y(i — 1))
k2 = func(x(i — 1) + h / 2, y(i — 1) + k1 * h / 2)
k3 = func(x(i — 1) + h / 2, y(i — 1) + k2 * h / 2)
k4 = func(x(i), y(i — 1) + k3 * h)

y(i) = y(i — 1) + h / 6 * (k1 + 2 * k2 + 2 * k3 + k4) ‘значения вычисляются
p(i — 1) = k1 ‘сохранение в массив для графика

Чтобы на диаграмме отобразились рассчитанные графики, производится заполнение соответствующих диапазонов в столбцах «AA-AB-AC»… Можете сравнить результаты с этим табличным вариантом.

источники:

http://pers.narod.ru/study/excel_odu.html

http://orenstudent.ru/RungeKuttaVBA_change_formula.htm

Понравилась статья? Поделить с друзьями:
  • Дисконтированный срок окупаемости расчет excel
  • Дисконтированный срок окупаемости пример расчета в excel
  • Дисконтированный денежный поток формула excel
  • Дисконтированный денежный поток в excel пример
  • Дисконтированные денежные потоки в excel