Что такое матричный функции excel

В программе Excel с матрицей можно работать как с диапазоном. То есть совокупностью смежных ячеек, занимающих прямоугольную область.

Адрес матрицы – левая верхняя и правая нижняя ячейка диапазона, указанные черед двоеточие.

Формулы массива

Построение матрицы средствами Excel в большинстве случаев требует использование формулы массива. Основное их отличие – результатом становится не одно значение, а массив данных (диапазон чисел).

Порядок применения формулы массива:

  1. Выделить диапазон, где должен появиться результат действия формулы.
  2. Ввести формулу (как и положено, со знака «=»).
  3. Нажать сочетание кнопок Ctrl + Shift + Ввод.

В строке формул отобразится формула массива в фигурных скобках.

Чтобы изменить или удалить формулу массива, нужно выделить весь диапазон и выполнить соответствующие действия. Для введения изменений применяется та же комбинация (Ctrl + Shift + Enter). Часть массива изменить невозможно.



Решение матриц в Excel

С матрицами в Excel выполняются такие операции, как: транспонирование, сложение, умножение на число / матрицу; нахождение обратной матрицы и ее определителя.

Транспонирование

Транспонировать матрицу – поменять строки и столбцы местами.

Сначала отметим пустой диапазон, куда будем транспонировать матрицу. В исходной матрице 4 строки – в диапазоне для транспонирования должно быть 4 столбца. 5 колонок – это пять строк в пустой области.

Матрича чисел.

  • 1 способ. Выделить исходную матрицу. Нажать «копировать». Выделить пустой диапазон. «Развернуть» клавишу «Вставить». Открыть меню «Специальной вставки». Отметить операцию «Транспонировать». Закрыть диалоговое окно нажатием кнопки ОК.
  • Транспонирование.

  • 2 способ. Выделить ячейку в левом верхнем углу пустого диапазона. Вызвать «Мастер функций». Функция ТРАНСП. Аргумент – диапазон с исходной матрицей.

ТРАНСП.

Нажимаем ОК. Пока функция выдает ошибку. Выделяем весь диапазон, куда нужно транспонировать матрицу. Нажимаем кнопку F2 (переходим в режим редактирования формулы). Нажимаем сочетание клавиш Ctrl + Shift + Enter.

Преимущество второго способа: при внесении изменений в исходную матрицу автоматически меняется транспонированная матрица.

Сложение

Складывать можно матрицы с одинаковым количеством элементов. Число строк и столбцов первого диапазона должно равняться числу строк и столбцов второго диапазона.

Сложение.

В первой ячейке результирующей матрицы нужно ввести формулу вида: = первый элемент первой матрицы + первый элемент второй: (=B2+H2). Нажать Enter и растянуть формулу на весь диапазон.

Пример.

Умножение матриц в Excel

Условие задачи:

Умножение.

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число. Формула в Excel: =A1*$E$3 (ссылка на ячейку с числом должна быть абсолютной).

Пример1.

Умножим матрицу на матрицу разных диапазонов. Найти произведение матриц можно только в том случае, если число столбцов первой матрицы равняется числу строк второй.

Разные диапазоны.

В результирующей матрице количество строк равняется числу строк первой матрицы, а количество колонок – числу столбцов второй.

Для удобства выделяем диапазон, куда будут помещены результаты умножения. Делаем активной первую ячейку результирующего поля. Вводим формулу: =МУМНОЖ(A9:C13;E9:H11). Вводим как формулу массива.

Пример2.

Обратная матрица в Excel

Ее имеет смысл находить, если мы имеем дело с квадратной матрицей (количество строк и столбцов одинаковое).

Размерность обратной матрицы соответствует размеру исходной. Функция Excel – МОБР.

Выделяем первую ячейку пока пустого диапазона для обратной матрицы. Вводим формулу «=МОБР(A1:D4)» как функцию массива. Единственный аргумент – диапазон с исходной матрицей. Мы получили обратную матрицу в Excel:

МОБР.

Нахождение определителя матрицы

Это одно единственное число, которое находится для квадратной матрицы. Используемая функция – МОПРЕД.

Ставим курсор в любой ячейке открытого листа. Вводим формулу: =МОПРЕД(A1:D4).

МОПРЕД.

Таким образом, мы произвели действия с матрицами с помощью встроенных возможностей Excel.

Под матрицей подразумевается набор ячеек, расположенных непосредственно друг возле друга и которые образуют вместе прямоугольник. Не требуется особых навыков, чтобы выполнять различные действия с матрицей, достаточно тех же, какие используются во время работы с классическим диапазоном.

Каждая матрица имеет свой адрес, записывающийся аналогичным диапазону способом. Первая составная часть – первая ячейка диапазона (расположенная в верхнем левом углу), а второй – последняя ячейка, которая находится в нижнем правом углу. 

Содержание

  1. Формулы массива
  2. Что можно делать с матрицами
  3. Транспонирование
  4. Сложение
  5. Умножение
  6. Обратная матрица
  7. Поиск определителя матрицы
  8. Несколько примеров
  9. Умножение и деление
  10. Метод 1
  11. Метод 2
  12. Сложение и вычитание
  13. Метод 1
  14. Метод 2
  15. Пример транспонирования матрицы
  16. Поиск обратной матрицы
  17. Выводы

Формулы массива

В подавляющем количестве задач при работе с массивами (а матрицы и являются таковыми) используются формулы соответствующего типа. Базовое их отличие от обычных заключается в том, что последние выводят всего одно значение. Для применения формулы массива необходимо осуществить несколько действий:

  1. Выделить набор ячеек, где будут выводиться значения. 
  2. Непосредственно введение формулы. 
  3. Нажатие последовательности клавиш Ctrl + Shift + Ввод.

После осуществления этих простых действий в поле ввода отображается формула массива. Ее можно отличить от обычной по фигурным скобкам.

Для редактирования, удаления формул массива, надо выделить требуемый диапазон и сделать то, что нужно. Чтобы редактировать матрицу, нужно использовать ту же комбинацию, что и для ее создания. При этом нет возможности редактировать отдельный элемент массива.

Что можно делать с матрицами

В целом, есть огромное количество действий, применение которых возможно для матриц. Давайте каждое из них рассмотрим более подробно.

Транспонирование

Многие люди не понимают значения этого термина. Представьте, что вам нужно поменять строки и колонки местами. Вот это действие и называется транспонированием. 

Перед тем, как это осуществить, необходимо выделить отдельную область, которая имеет такое же количество строчек, сколько столбцов есть у исходной матрицы и такое же количество столбцов. Чтобы более наглядно понять, как это работает, посмотрите на этот скриншот.Операции с матрицами в Excel

Далее есть несколько методов, как можно осуществить транспонирование. 

Первый способ следующий. Для начала нужно выделить матрицу, после чего скопировать ее. Далее выделяется диапазон ячеек, куда должен быть вставлен транспонированный диапазон. Далее открывается окно «Специальная вставка».

Там есть множество операций, но нам нужно найти радиокнопку «Транспонировать». После совершения этого действия нужно подтвердить его нажатием клавиши ОК.Операции с матрицами в Excel

Есть еще один способ, с помощью которого можно транспонировать матрицу. Сперва надо выделить ячейку, расположенную в верхнем левом углу диапазона, отведенного под транспонированную матрицу. Далее открывается диалоговое окно с функциями, где есть функция ТРАНСП. Ниже в примере вы более подробно узнаете, как это сделать. В качестве параметра функции используется диапазон, соответствующий изначальной матрице.Операции с матрицами в Excel

После нажатия кнопки ОК сначала будет показано, что вы допустили ошибку. Ничего в этом страшного нет. Все потому, что вставленная нами функция не определена, как формула массива. Поэтому нам нужно совершить такие действия:

  1. Выделить набор ячеек, отведенных под транспонированную матрицу.
  2. Нажать клавишу F2.
  3. Нажать на горячие клавиши Ctrl + Shift + Enter.

Главное достоинство метода заключается в способности транспонированной матрицы сразу корректировать содержащуюся в ней информацию, как только вносятся данные в изначальную. Поэтому рекомендуется использовать именно данный способ.

Сложение

Эта операция возможна лишь применительно к тем диапазонам, количество элементов которых такое же самое. Проще говоря, у каждой из матриц, с которыми пользователь собирается работать, должны быть одинаковые размеры. И приводим скриншот для наглядности.Операции с матрицами в Excel

В матрице, которая должна получиться, нужно выделить первую ячейку и ввести такую формулу.

=Первый элемент первой матрицы + Первый элемент второй матрицы 

Далее подтверждаем ввод формулы с помощью клавиши Enter и используем автозаполнение (квадратик в правом нижнем углу), чтобы скопировать все значения на новую матрицу.Операции с матрицами в Excel

Умножение

Предположим, у нас есть такая таблица, которую следует умножить на 12.Операции с матрицами в Excel

Догадливый читатель может легко понять, что метод очень похож на предыдущий. То есть, каждая из ячеек матрицы 1 должна умножаться на 12, чтобы в итоговой матрице каждая ячейка содержала значение, умноженное на этот коэффициент.

При этом важно указывать абсолютные ссылки на ячейки.

Итого, получится такая формула.

=A1*$E$3Операции с матрицами в Excel

Дальше методика аналогична предыдущей. Нужно это значение растянуть на необходимое количество ячеек. 

Предположим, что необходимо перемножить матрицы между собой. Но есть лишь одно условие, при котором это возможно. Надо, чтобы количество столбцов и строк у двух диапазонов было зеркально одинаковое. То есть, сколько столбцов, столько и строк.Операции с матрицами в Excel

Чтобы было более удобно, нами выделен диапазон с результирующей матрицей. Надо переместить курсор на ячейку в верхнем левом углу и ввести такую формулу =МУМНОЖ(А9:С13;Е9:H11). Не стоит забыть нажать Ctrl + Shift + Enter.Операции с матрицами в Excel

Обратная матрица

Если наш диапазон имеет квадратную форму (то есть, количество ячеек по горизонтали и вертикали одинаковое), то тогда получится найти обратную матрицу, если в этом есть такая необходимость. Ее величина будет аналогичной исходной. Для этого используется функция МОБР.

Для начала следует выделить первую ячейку матрицы, в какую будет вставляться обратная. Туда вводится формула =МОБР(A1:A4). В аргументе указывается диапазон, для какого нам надо создать обратную матрицу. Осталось только нажать Ctrl + Shift + Enter, и готово.Операции с матрицами в Excel

Поиск определителя матрицы

Под определителем подразумевается число, находящееся матрицы квадратной формы. Чтобы осуществить поиск определителя матрицы, существует функция – МОПРЕД.

Для начала ставится курсор в какой-угодно ячейке. Далее мы вводим =МОПРЕД(A1:D4)

Несколько примеров

Давайте для наглядности рассмотрим некоторые примеры операций, которые можно осуществлять с матрицами в Excel.

Умножение и деление

Метод 1

Предположим, у нас есть матрица A, имеющая три ячейки в высоту и четыре – в ширину. Также есть число k, которое записывается в другой ячейке. После выполнения операции умножения матрицы на число появится диапазон значений, имеющий аналогичные размеры, но каждая ее часть умножается на k.Операции с матрицами в Excel

Диапазон B3:E5 – это исходная матрица, которая будет умножаться на число k, которое в свою очередь расположено в ячейке H4. Результирующая матрица будет находиться в диапазоне K3:N5. Исходная матрица будет называться A, а результирующая – B. Последняя образуется путем умножения матрицы А на число k. 

Далее вводится =B3*$H$4 в ячейку K3, где В3 — элемент A11 матрицы А.

Не стоит забывать о том, ячейку H4, где указано число k необходимо вводить в формулу с помощью абсолютной ссылки. Иначе значение будет изменяться при копировании массива, и результирующая матрица потеряет работоспособность.Операции с матрицами в Excel

Далее маркер автозаполнения (тот самый квадратик в правом нижнем углу) используется для того, чтобы скопировать значение, полученное в ячейке K3, во все другие ячейки этого диапазона.Операции с матрицами в Excel

Вот у нас и получилось умножить матрицу A на определенное число и получить на выходе матрицу B.

Деление осуществляется аналогичным образом. Только вводить нужно формулу деления. В нашем случае это =B3/$H$4.

Метод 2

Итак, основное отличие этого метода в том, в качетве результата выдается массив данных, поэтому нужно применить формулу массива, чтобы заполнить весь набор ячеек.

Необходимо выделить результирующий диапазон, ввести знак равно (=), выделить набор ячеек, с соответствующими первой матрице размерами, нажать на звездочку. Далее выделяем ячейку с числом k. Ну и чтобы подтвердить свои действия, надо нажать на вышеуказанную комбинацию клавиш. Ура, весь диапазон заполняется.Операции с матрицами в Excel

Деление осуществляется аналогичным образом, только знак * нужно заменить на /.

Сложение и вычитание

Давайте опишем несколько практических примеров использования методов сложения и вычитания на практике.

Метод 1

Не стоит забывать, что возможно сложение лишь тех матриц, размеры которых одинаковые. В результирующем диапазоне все ячейки заполняются значением, являющим собой сумму аналогичных ячеек исходных матриц.

Предположим, у нас есть две матрицы, имеющие размеры 3х4. Чтобы вычислить сумму, следет в ячейку N3 вставить такую формулу:

=B3+H3

Тут каждый элемент являет собой первую ячейку матриц, которые мы собрались складывать. Важно, чтобы ссылки были относительными, поскольку если использовать абсолютные, не будут отображаться правильные данные.Операции с матрицами в Excel

Далее, аналогично умножению, с помощью маркера автозаполнения распространяем формулу на все ячейки результирующей матрицы.Операции с матрицами в Excel

Вычитание осуществляется аналогично, за тем лишь исключением, что используется знак вычитания (-), а не сложения.

Метод 2

Аналогично методу сложения и вычитание двух матриц, этот способ подразумевает использование формулы массива. Следовательно, в качестве ее результата будет выдаваться сразу набор значений. Поэтому нельзя редактировать или удалять какие-то элементы.

Сперва надо выделить диапазон, отделенный под результирующую матрицу, а потом нажать на «=». Затем надо указать первый параметр формулы в виде диапазона матрицы А, нажать на знак + и записать второй параметр в виде диапазона, соответствующему матрице B. Подтверждаем свои действия нажатием комбинации Ctrl + Shift + Enter. Все, теперь вся результирующая матрица заполнена значениями.Операции с матрицами в Excel

Пример транспонирования матрицы

Допустим, нам надо создать матрицу АТ из матрицы А, которая у нас есть изначально методом транспонирования. Последняя имеет, уже по традиции, размеры 3х4. Для этого будем использовать функцию =ТРАНСП().Операции с матрицами в Excel

Выделяем диапазон для ячеек матрицы АТ.Операции с матрицами в Excel

Для этого надо перейти на вкладку «Формулы», где выбрать опцию «Вставить функцию», там найти категорию «Ссылки и массивы» и найти функцию ТРАНСП. После этого свои действия подтверждаются кнопкой ОК.

Далее переходим в окно «Аргументы функции», где вводится диапазон B3:E5, который повторяет матрицу А. Далее надо нажать Shift + Ctrl, после чего кликнуть «ОК».

Важно. Нужно не лениться нажимать эти горячие клавиши, потому что в ином случае будет рассчитано только значение первой ячейки диапазона матрицы АТ.

В результате, у нас получается такая транспонированная таблица, которая изменяет свои значения вслед за исходной.Операции с матрицами в Excel

Операции с матрицами в Excel

Поиск обратной матрицы

Предположим, у нас есть матрица А, которая имеет размеры 3х3 ячеек. Мы знаем, что для поиска обратной матрицы необходимо использовать функцию =МОБР().Операции с матрицами в Excel

Теперь опишем, как это делать на практике. Сначала необходимо выделить диапазон G3:I5 (там будет располагаться обратная матрица). Необходимо найти на вкладке «Формулы» пункт «Вставить функцию».Операции с матрицами в Excel

Откроется диалог «Вставка функции», где нужно выбрать категорию «Математические». И там в перечне будет функция МОБР. После того, как мы ее выберем, нужно нажать на клавишу ОК. Далее появляется диалоговое окно «Аргументы функции», в котором записываем диапазон B3:D5, который соответствует матрице А. Далее действия аналогичные транспонированию. Нужно нажать на комбинацию клавиш Shift + Ctrl и нажать ОК.

Выводы

Мы разобрали некоторые примеры, как можно работать с матрицами в Excel, а также описали теорию. Оказывается, что это не так страшно, как может показаться на первый взгляд, не так ли? Это только звучит непонятно, но на деле с матрицами среднестатистическому пользователю приходится иметь дело каждый день. Они могут использоваться почти для любой таблицы, где есть сравнительно небольшое количество данных. И теперь вы знаете, как можно себе упростить жизнь в работе с ними.

Оцените качество статьи. Нам важно ваше мнение:

Умножение и деление матрицы на число в Excel

Способ 1

Рассмотрим матрицу А размерностью 3х4. Умножим эту матрицу на число k. При умножении матрицы на число получается матрица такой же размерности, что и исходная, при этом каждый элемент матрицы А умножается на число k.

Введем элементы матрицы в диапазон В3:Е5, а число k — в ячейку Н4. В диапазоне К3:N5 вычислим матрицу В, полученную при умножении матрицы А на число k: В=А*k. Для этого введем формулу =B3*$H$4 в ячейку K3, где В3 — элемент а11 матрицы А.

Примечание: адрес ячейки H4 вводим как абсолютную ссылку, чтобы при копировании формулы ссылка не менялась.

С помощью маркера автозаполнения копируем формулу ячейки К3 вниз и вправо на весь диапазон матрицы В.

Таким образом, мы умножили матрицу А в Excel и получим матрицу В.

Для деления матрицы А на число k в ячейку K3 введем формулу =B3/$H$4 и скопируем её на весь диапазон матрицы В.

Способ 2

Этот способ отличается тем, что результат умножения/деления матрицы на число сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий исходную матрицу А, нажимаем на клавиатуре знак умножить (*) и выделяем ячейку с числом k. После ввода формулы нажимаем сочетание клавиш Ctrl+Shift+Enter, чтобы значениями заполнился весь диапазон.

 Умножение матрицы на число в Excel

Для выполнения деления в данном примере в диапазон вводим формулу =B3:E5/H4, т.е. знак «*» меняем на «/».

Умножение матрицы на число в Excel

Сложение и вычитание матриц в Excel

Способ 1

Следует отметить, что складывать и вычитать можно матрицы одинаковой размерности (одинаковое количество строк и столбцов у каждой из матриц). Причем каждый элемент результирующей матрицы С будет равен сумме соответствующих элементов матриц А и В, т.е. сij = аij + bij.

Рассмотрим матрицы А и В размерностью 3х4. Вычислим сумму этих матриц. Для этого в ячейку N3 введем формулу =B3+H3, где B3 и H3 – первые элементы матриц А и В соответственно. При этом формула содержит относительные ссылки (В3 и H3), чтобы при копировании формулы на весь диапазон матрицы С они могли измениться.

С помощью маркера автозаполнения скопируем формулу из ячейки N3 вниз и вправо на весь диапазон матрицы С.

Для вычитания матрицы В из матрицы А (С=А — В) в ячейку N3 введем формулу =B3 — H3 и скопируем её на весь диапазон матрицы С.

Способ 2

Этот способ отличается тем, что результат сложения/вычитания матриц сам является массивом. В этом случае нельзя удалить элемент массива.

Для деления матрицы на число этим способом выделяем диапазон, в котором будет вычислен результат, вводим знак «=», выделяем диапазон, содержащий первую матрицу А, нажимаем на клавиатуре знак сложения (+) и выделяем вторую матрицу В. После ввода формулы нажимаем сочетание клавиш Ctrl+Shift+Enter, чтобы значениями заполнился весь диапазон.

Умножение матриц в Excel

Следует отметить, что умножать матрицы можно только в том случае, если количество столбцов первой матрицы А равно количеству строк второй матрицы В.

Рассмотрим матрицы А размерностью 3х4 и В размерностью 4х2. При умножении этих матриц получится матрица С размерностью 3х2.

Вычислим произведение этих матриц С=А*В с помощью встроенной функции =МУМНОЖ(). Для этого выделим диапазон L3:M5 — в нём будут располагаться элементы матрицы С, полученной в результате умножения. На вкладке Формулы выберем Вставить функцию.

В диалоговом окне Вставка функции выберем Категория Математические — функция МУМНОЖОК.

В диалоговом окне Аргументы функции выберем диапазоны, содержащие матрицы А и В. Для этого напротив массива1 щёлкнем по красной стрелке.

Выделим диапазон, содержащий элементы матрицы А (имя диапазона появится в строке аргументов), и щелкнем по красной стрелке.

Для массива2 выполним те же действия. Щёлкнем по стрелке напротив массива2.

Выделим диапазон, содержащий элементы матрицы В, и щелкнем по красной стрелке.

В диалоговом окне рядом со строками ввода диапазонов матриц появятся элементы матриц, а внизу — элементы матрицы С. После ввода значений нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы С.

Мы получим результат умножения матриц А и В.

Мы можем изменить значения ячеек матриц А и В, значения матрицы С поменяются автоматически.

Транспонирование матрицы в Excel

Транспонирование матрицы — операция над матрицей, при которой столбцы заменяются строками с соответствующими номерами. Обозначим транспонированную матрицу АТ.

Пусть дана матрица А размерностью 3х4, с помощью функции =ТРАНСП() вычислим транспонированную матрицу АТ, причем размерность этой матрицы будет 4х3.

Выделим диапазон Н3:J6, в который будут введены значения транспонированной матрицы.

На вкладке Формулы выберем Вставить функцию, выберем категорию Ссылки и массивы — функция ТРАНСПОК.

В диалоговом окне Аргументы функции указываем диапазон массива В3:Е5, содержащего элементы матрицы А. Нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы АТ.

Нажмите для увеличения

Мы получили транспонированную матрицу.

Нахождение обратной матрицы в Excel

Матрица А-1 называется обратной для матрицы А, если АžА-1-1žА=Е, где Е — единичная матрица. Следует отметить, что обратную матрицу можно найти только для квадратной матрицы (одинаковое количество строк и столбцов).

Пусть дана матрица А размерностью 3х3, найдем для неё обратную матрицу с помощью функции =МОБР().

Для этого выделим диапазон G3:I5, который будет содержать элементы обратной матрицы, на вкладке Формулы выберем Вставить функцию.

В диалоговом окне Вставка функции выберем категорию Математические — функция МОБРОК.

В диалоговом окне Аргументы функции указываем диапазон массива В3:D5, содержащего элементы матрицы А. Нажимаем на клавиатуре сочетание клавиш Shift+Ctrl и щелкаем левой кнопкой мыши по кнопке ОК.

ВАЖНО. Если просто нажать ОК, то программа вычислит значение только первой ячейки диапазона матрицы А-1.

Нажмите для увеличения

Мы получили обратную матрицу.

Нахождение определителя матрицы в Excel

Определитель матрицы — это число, которое является важной характеристикой квадратной матрицы.

Как найти определить матрицы в Excel

Пусть дана матрица А размерностью 3х3, вычислим для неё определитель с помощью функции =МОПРЕД().

Для этого выделим ячейку Н4, в ней будет вычислен определитель матрицы, на вкладке Формулы выберем Вставить функцию.

В диалоговом окне Вставка функции выберем категорию Математические — функция МОПРЕДОК.

В диалоговом окне Аргументы функции указываем диапазон массива В3:D5, содержащего элементы матрицы А. Нажимаем ОК.

Нажмите для увеличения

Мы вычислили определитель матрицы А.

В заключение обратим внимание на важный момент. Он касается тех операций над матрицами, для которых мы использовали встроенные в программу функции, а в результате получали новую матрицу (умножение матриц, нахождение обратной и транспонированной матриц). В матрице, которая получилась в результате операции, нельзя удалить часть элементов. Т.е. если мы выделим, например, один элемент матрицы и нажмём Del, то программа выдаст предупреждение: Нельзя изменять часть массива.

Нажмите для увеличения

Мы можем удалить только все элементы этой матрицы.

Видеоурок

Кратко об авторе:

Шамарина Татьяна НиколаевнаШамарина Татьяна Николаевна — учитель физики, информатики и ИКТ, МКОУ «СОШ», с. Саволенка Юхновского района Калужской области. Автор и преподаватель дистанционных курсов по основам компьютерной грамотности, офисным программам. Автор статей, видеоуроков и разработок.

Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя
стало известно автору, войдите на сайт как пользователь
и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.


Описание презентации по отдельным слайдам:

  • 1Российский государственный университет нефти и газа им. И.М. ГубкинаКафедра...

    1 слайд

    1
    Российский государственный университет нефти и газа им. И.М. Губкина
    Кафедра «Информатики»
    МАТРИЧНЫЕ ФУНКЦИИ
    В MS EXCEL

  • 2
Часто при работе с таблицами возникает необходимость применить одну и туже...

    2 слайд

    2

    Часто при работе с таблицами возникает необходимость применить одну и туже операцию к целому диапазону ячеек или произвести расчеты по формулам, зависящим от большого массива данных.

    Массив в MS Excel – это прямоугольный диапазон формул или значений, которые программа обрабатывает как единую группу.

    Порядок применения формулы массива:
    Выделить диапазон, где должен появиться результат действия формулы.
    Ввести формулу
    Нажать сочетание кнопок Ctrl + Shift + Enter. Таким образом, вы сообщите MS Excel , что надо выполнить операцию над массивом.

    В строке формул отобразится формула массива в фигурных скобках.
    Чтобы изменить или удалить формулу массива, нужно выделить весь диапазон и выполнить соответствующие действия
    . Для введения изменений применяется та же комбинация (Ctrl + Shift + Enter).
    Часть массива изменить невозможно.

  • Пример использования формулы массива для расчета цен группы товаров с учетом...

    3 слайд

    Пример использования формулы массива для расчета цен группы товаров с учетом НДС (20%).
    Необходимо умножить массив элементов В2:В5 на 20%. Результат надо разместить в ячейках диапазона С2:С5

    3

  • 4
Массивы в формулах могут быть заданы:
как диапазон ячеек, например А1:С3;
к...

    4 слайд

    4

    Массивы в формулах могут быть заданы:
    как диапазон ячеек, например А1:С3;
    как массив констант, например {1;2;3:4;5;6:7;8;9};

    как имя диапазона.

  • 5ФУНКЦИИ ОБРАБОТКИ МАТРИЦ

МОБР – возвращает обратную матрицу

МОПРЕД – возвр...

    5 слайд

    5
    ФУНКЦИИ ОБРАБОТКИ МАТРИЦ

    МОБР – возвращает обратную матрицу

    МОПРЕД – возвращает определитель матрицы

    МУМНОЖ – возвращает матричное произведение двух матриц

    ТРАНСП – возвращает транспонированную матрицу.

    При работе с матрицами, перед вводом формулы, надо выделить область на рабочем листе, куда будет помещен результат вычислений, а ввод формулы завершать нажатием комбинации клавиш Ctrl + Shift + Enter

  • Матрицу можно задать с помощью датчика случайных чисел
С помощью функции СЛЧИ...

    6 слайд

    Матрицу можно задать с помощью датчика случайных чисел
    С помощью функции СЛЧИС мы имеем возможность генерировать любое случайное число в диапазоне от 0 до 1
    С помощью СЛУЧМЕЖДУ мы имеем возможность генерировать целые случайные числа между двумя заданными числами.
    6

  • 7Транспонирование 
Сначала отметим пустой диапазон, куда будем транспонироват...

    7 слайд

    7
    Транспонирование
    Сначала отметим пустой диапазон, куда будем транспонировать матрицу (3х3).

    1 способ: Выделить исходную матрицу. Нажать «копировать». Выделить пустой диапазон. Вызвать правой кнопкой мыши КЗМ и открыть меню «Специальной вставки». Отметить операцию «Транспонировать». Закрыть диалоговое окно нажатием кнопки ОК.

  • 82 способ: Выделить ячейку в левом верхнем углу пустого диапазона. Вызвать «М...

    8 слайд

    8
    2 способ: Выделить ячейку в левом верхнем углу пустого диапазона. Вызвать «Мастер функций». Функция ТРАНСП. В качестве аргумента – диапазон с исходной матрицей.
    Нажимаем ОК. Пока функция выдает ошибку. Выделяем весь диапазон, куда нужно транспонировать матрицу. Нажимаем кнопку F2 (переходим в режим редактирования формулы). Нажимаем сочетание клавиш Ctrl + Shift + Enter.

    Преимущество второго способа: при внесении изменений в исходную матрицу автоматически меняется транспонированная матрица.

  • 9Сложение матриц:
Складывать можно матрицы с одинаковым количеством элементов...

    9 слайд

    9
    Сложение матриц:
    Складывать можно матрицы с одинаковым количеством элементов. Число строк и столбцов первого диапазона должно равняться числу строк и столбцов второго диапазона.
    В первой ячейке результирующей матрицы нужно ввести формулу вида: = первый элемент первой матрицы + первый элемент второй. Нажать Enter и растянуть формулу на весь диапазон. Например:

  • 10Умножение матрицы на число:
Чтобы умножить матрицу на число, нужно каждый е...

    10 слайд

    10
    Умножение матрицы на число:
    Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число. Ссылка на ячейку с числом должна быть абсолютной.

  • Произведение матриц. 

Найти произведение матриц можно только в том случае, е...

    11 слайд

    Произведение матриц.

    Найти произведение матриц можно только в том случае, если число столбцов первой матрицы равняется числу строк второй.

    11

Любому специалисту
в ходе практической деятельности
приходится совершать операции над
количественными данными, которые
осуществляются в соответствии с
математическими законами. Потому для
специалиста-нематематика наиболее
важным является практический аспект
математики. Для него эта прикладная
наука, близкая к технологии. Здесь
наиболее важным является умение провести
необходимые вычисления. Математическая
теория изменяется сравнительно медленно.
Использование компьютера при проведении
расчётов сдвигает акценты в математической
подготовке специалиста. Если раньше
основное внимание было сосредоточено
на математических методах, которые
предусматривали проведение расчётов
вручную, то теперь, с появлением
специализированных математических
программ, необходимо научиться проводить
требуемые вычисления на компьютере.

Средства MS Excel
очень полезны в линейной алгебре, прежде
всего для осуществления операций с
матрицами и решения систем линейных
уравнений.

Значительная часть
математических моделей различных
объектов и процессов записывается в
достаточно простой и компактной матричной
форме.

Как и над числами,
над матрицами можно проводить ряд
операций, причём в случае с матрицами
некоторые из операций являются
специфическими. Способов вычислений
существует также несколько. Например,
вычисления с помощью MS Excel.

Одной из операций
является операция транспонирования.
Для осуществления транспонирования в
Excel используется функция ТРАНСП, которая
позволяет поменять ориентацию массива
на рабочем листе с вертикальной на
горизонтальную и наоборот. Данная
функция будет иметь вид ТРАНСП (массив).
Здесь массив – это транспонируемый
массив или диапазон ячеек на рабочем
листе. Транспонирование массива
заключается в том, что первая строка
массива становится первым столбцом
нового массива, вторая строка массива
становится вторым столбцом нового
массива и т.д.

Одной из важных
характеристик квадратных матриц является
их определитель. Определитель матрицы
– это число, вычисляемое на основе
значений элементов массива. В MS Excel для
вычисления определителя квадратной
матрицы используется функция МОПРЕД.
Функция имеет вид МОПРЕД (массив). В этом
случае массив – это числовой массив, в
котором хранится матрица с равным
количеством строк и столбцов. При этом
массив может быть задан как интервал
ячеек, например А1:С3; или как массив
констант, например, (1;2;3;4;5;6;7;8;9). Для
массива А1:С3, состоящего из трёх строк
и трёх столбцов (матрица размером 3*3),
определитель вычисляется следующим
образом:


 

В MS Excel с матрицами
можно работать как с диапазоном ячеек.
Диапазон – это совокупность смежных
ячеек, образующих прямоугольную область
таблицы, заданную адресами левой верхней
и нижней правой ячеек области. При
указании диапазона принята форма записи,
в которой эти адреса указываются через
двоеточие.

Например,

B2:D4 – это диапазон
из девяти ячеек B2, B3, B4, C2, C3, C4, D2, D3, D4
(матрица размера 3х3);

B2:B5 — это диапазон
из четырех ячеек B2, B3, B4, B5 (вектор-
столбец);

B2:E2 — это диапазон
из четырех ячеек B2, C2, D2, E2 (вектор-строка).

В MS Excel возможно
использование формул, результатом
которых является не одно число, а диапазон
чисел – это так называемые (в документации
по программе) формулы массива.

Для ввода таки
формул необходимо выполнить следующие
действия:

  1. Выделить ячейки,
    в которые должен быть помещен результат
    выполнения формулы
    .

  2. Ввести формулу
    массива (начиная со знака «=»)

  3. нажать комбинацию
    клавиш Ctrl+Shift+Enter для завершения
    ввода (для этого нажимаются и удерживаются
    клавиши Ctrl+Shift и затем кратковременно
    нажимается клавиша Enter).

Введенные формулы
массива отображаются в строке формул
в фигурных скобках.

Для изменения (или
удаления) введенной ранее формулы
массива необходимо предварительно
выделить весь диапазон ячеек этой
формулы, а затем выполнить желаемое
действие. Часть ячеек формулы массива
изменить нельзя.

Операции с
векторами и матрицами
.

  1. Результат сложения
    (вычитания) матриц (векторов) одинакового
    размера n x m (A) и (B) (число
    столбцов и строк матриц должны совпадать)
    есть матрица (C) размера n x m,
    каждый элемент которой равен сумме
    (или разности) соответствующих элементов
    матиц (A) и (B)


    . Ниже приведен рабочий лист сложения
    двух векторов-столбцов, заданных в
    ячейках A2:A5 и C2:C5, суммарный вектор
    получается в ячейках E2:E5.

Скалярное
произведение двух векторов
.

Скалярным
произведением двух векторов одинаковой
длины n называется сумма парных
произведений соответствующих компонентов
вектора.

Для этой операции
можно использовать встроенную функцию
СУММПРОИЗВ. У этой функции два
параметра, отделяемые точкой запятой.
Так как результат вычислений – это одно
число, то формула вводится в одну ячейку.

Матричное
произведение

Произведением
матриц (A) размером n x m и
(B) размером m x l называется
матрица (C) размером n x l
, такая что элемент, стоящий на пересечении
i-ой строки и j-го столбца cij
равен скалярному произведению i-ой
строки матрицы (A) и j-ого
столбца матрицы (B).

На рисунке ниже
приведено матричное умножение матрицы
размера (3×3) на вектор-столбец (3х1).
Результат – вектор-столбец размером(3х1).

В MS Excel для матричного
умножения исполдьзуется встроенная
функция МУМНОЖ. У нее два параметра,
соответствующих двум диапазонам,
содержащим перемножаемые матрицы.
Результат функции — это матрица, поэтому
вводиться она должна в диапазон ячеек
как функция
массива.

Обращение матрицы

Матрицей, обратной
матрице (А) размера (n x n)
называется такая матрица (А)-1
размера (n x n), что при перемножении
этих матриц в любом порядке получается
единичная диагональная матрица:


,

здесь (1) – это
единичная диагональная матрица размера
(n x n) – все элементы которой
равны 0, за исключением диагональных,
которые равны 1.

Нахождение обратной
матрицы выполняет встроенная функция
МОБР. У нее единственный аргумент,
который является квадратным диапазоном,
содержащим обращаемую матрицу. Функция
возвращает матрицу, равную по размеру
обращаемой матрице, поэтому должна
вводится как функция массива.

Определитель
матрицы

Нахождение
определителя матрицы выполняет встроенная
функция МОПРЕД. У нее единственный
параметр — это диапазон, содержащий
матрицу, определитель которой надо
найти. Например, формула =МОПРЕД(B2:D4)
вычисляет определитель матрицы размера
3 x 3, записанной в диапазоне B2:D4

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Like this post? Please share to your friends:
  • Что такое миф для excel
  • Что такое математические формулы в word
  • Что такое миф word
  • Что такое математическая функция excel
  • Что такое минимум в excel