Библиотека pandas работа с excel

Время на прочтение
5 мин

Количество просмотров 63K

Excel — это чрезвычайно распространённый инструмент для анализа данных. С ним легко научиться работать, есть он практически на каждом компьютере, а тот, кто его освоил, может с его помощью решать довольно сложные задачи. Python часто считают инструментом, возможности которого практически безграничны, но который освоить сложнее, чем Excel. Автор материала, перевод которого мы сегодня публикуем, хочет рассказать о решении с помощью Python трёх задач, которые обычно решают в Excel. Эта статья представляет собой нечто вроде введения в Python для тех, кто хорошо знает Excel.

Загрузка данных

Начнём с импорта Python-библиотеки pandas и с загрузки в датафреймы данных, которые хранятся на листах sales и states книги Excel. Такие же имена мы дадим и соответствующим датафреймам.

import pandas as pd
sales = pd.read_excel('https://github.com/datagy/mediumdata/raw/master/pythonexcel.xlsx', sheet_name = 'sales')
states = pd.read_excel('https://github.com/datagy/mediumdata/raw/master/pythonexcel.xlsx', sheet_name = 'states')

Теперь воспользуемся методом .head() датафрейма sales для того чтобы вывести элементы, находящиеся в начале датафрейма:

print(sales.head())

Сравним то, что будет выведено, с тем, что можно видеть в Excel.

Сравнение внешнего вида данных, выводимых в Excel, с внешним видом данных, выводимых из датафрейма pandas

Тут можно видеть, что результаты визуализации данных из датафрейма очень похожи на то, что можно видеть в Excel. Но тут имеются и некоторые очень важные различия:

  • Нумерация строк в Excel начинается с 1, а в pandas номер (индекс) первой строки равняется 0.
  • В Excel столбцы имеют буквенные обозначения, начинающиеся с буквы A, а в pandas названия столбцов соответствуют именам соответствующих переменных.

Продолжим исследование возможностей pandas, позволяющих решать задачи, которые обычно решают в Excel.

Реализация возможностей Excel-функции IF в Python

В Excel существует очень удобная функция IF, которая позволяет, например, записать что-либо в ячейку, основываясь на проверке того, что находится в другой ячейке. Предположим, нужно создать в Excel новый столбец, ячейки которого будут сообщать нам о том, превышают ли 500 значения, записанные в соответствующие ячейки столбца B. В Excel такому столбцу (в нашем случае это столбец E) можно назначить заголовок MoreThan500, записав соответствующий текст в ячейку E1. После этого, в ячейке E2, можно ввести следующее:

=IF([@Sales]>500, "Yes", "No")

Использование функции IF в Excel

Для того чтобы сделать то же самое с использованием pandas, можно воспользоваться списковым включением (list comprehension):

sales['MoreThan500'] = ['Yes' if x > 500 else 'No' for x in sales['Sales']]

Списковые включения в Python: если текущее значение больше 500 — в список попадает Yes, в противном случае — No

Списковые включения — это отличное средство для решения подобных задач, позволяющее упростить код за счёт уменьшения потребности в сложных конструкциях вида if/else. Ту же задачу можно решить и с помощью if/else, но предложенный подход экономит время и делает код немного чище. Подробности о списковых включениях можно найти здесь.

Реализация возможностей Excel-функции VLOOKUP в Python

В нашем наборе данных, на одном из листов Excel, есть названия городов, а на другом — названия штатов и провинций. Как узнать о том, где именно находится каждый город? Для этого подходит Excel-функция VLOOKUP, с помощью которой можно связать данные двух таблиц. Эта функция работает по принципу левого соединения, когда сохраняется каждая запись из набора данных, находящегося в левой части выражения. Применяя функцию VLOOKUP, мы предлагаем системе выполнить поиск определённого значения в заданном столбце указанного листа, а затем — вернуть значение, которое находится на заданное число столбцов правее найденного значения. Вот как это выглядит:

=VLOOKUP([@City],states,2,false)

Зададим на листе sales заголовок столбца F как State и воспользуемся функцией VLOOKUP для того чтобы заполнить ячейки этого столбца названиями штатов и провинций, в которых расположены города.

Использование функции VLOOKUP в Excel

В Python сделать то же самое можно, воспользовавшись методом merge из pandas. Он принимает два датафрейма и объединяет их. Для решения этой задачи нам понадобится следующий код:

sales = pd.merge(sales, states, how='left', on='City')

Разберём его:

  1. Первый аргумент метода merge — это исходный датафрейм.
  2. Второй аргумент — это датафрейм, в котором мы ищем значения.
  3. Аргумент how указывает на то, как именно мы хотим соединить данные.
  4. Аргумент on указывает на переменную, по которой нужно выполнить соединение (тут ещё можно использовать аргументы left_on и right_on, нужные в том случае, если интересующие нас данные в разных датафреймах названы по-разному).

Сводные таблицы

Сводные таблицы (Pivot Tables) — это одна из самых мощных возможностей Excel. Такие таблицы позволяют очень быстро извлекать ценные сведения из больших наборов данных. Создадим в Excel сводную таблицу, выводящую сведения о суммарных продажах по каждому городу.

Создание сводной таблицы в Excel

Как видите, для создания подобной таблицы достаточно перетащить поле City в раздел Rows, а поле Sales — в раздел Values. После этого Excel автоматически выведет суммарные продажи для каждого города.

Для того чтобы создать такую же сводную таблицу в pandas, нужно будет написать следующий код:

sales.pivot_table(index = 'City', values = 'Sales', aggfunc = 'sum')

Разберём его:

  1. Здесь мы используем метод sales.pivot_table, сообщая pandas о том, что мы хотим создать сводную таблицу, основанную на датафрейме sales.
  2. Аргумент index указывает на столбец, по которому мы хотим агрегировать данные.
  3. Аргумент values указывает на то, какие значения мы собираемся агрегировать.
  4. Аргумент aggfunc задаёт функцию, которую мы хотим использовать при обработке значений (тут ещё можно воспользоваться функциями mean, max, min и так далее).

Итоги

Из этого материала вы узнали о том, как импортировать Excel-данные в pandas, о том, как реализовать средствами Python и pandas возможности Excel-функций IF и VLOOKUP, а также о том, как воспроизвести средствами pandas функционал сводных таблиц Excel. Возможно, сейчас вы задаётесь вопросом о том, зачем вам пользоваться pandas, если то же самое можно сделать и в Excel. На этот вопрос нет однозначного ответа. Python позволяет создавать код, который поддаётся тонкой настройке и глубокому исследованию. Такой код можно использовать многократно. Средствами Python можно описывать очень сложные схемы анализа данных. А возможностей Excel, вероятно, достаточно лишь для менее масштабных исследований данных. Если вы до этого момента пользовались только Excel — рекомендую испытать Python и pandas, и узнать о том, что у вас из этого получится.

А какие инструменты вы используете для анализа данных?

Напоминаем, что у нас продолжается конкурс прогнозов, в котором можно выиграть новенький iPhone. Еще есть время ворваться в него, и сделать максимально точный прогноз по злободневным величинам.

Excel sheets are very instinctive and user-friendly, which makes them ideal for manipulating large datasets even for less technical folks. If you are looking for places to learn to manipulate and automate stuff in excel files using Python, look no more. You are at the right place.

Python Pandas With Excel Sheet

In this article, you will learn how to use Pandas to work with Excel spreadsheets. At the end of the article, you will have the knowledge of:

  • Necessary modules are needed for this and how to set them up in your system.
  • Reading data from excel files into pandas using Python.
  • Exploring the data from excel files in Pandas.
  • Using functions to manipulate and reshape the data in Pandas.

Installation

To install Pandas in Anaconda, we can use the following command in Anaconda Terminal:

conda install pandas

To install Pandas in regular Python (Non-Anaconda), we can use the following command in the command prompt:

pip install pandas

Getting Started

First of all, we need to import the Pandas module which can be done by running the command: Pandas

Python3

Input File: Let’s suppose the excel file looks like this 

Sheet 1: 

Sheet 2: 

Now we can import the excel file using the read_excel function in Pandas. The second statement reads the data from excel and stores it into a pandas Data Frame which is represented by the variable newData. If there are multiple sheets in the excel workbook, the command will import data of the first sheet. To make a data frame with all the sheets in the workbook, the easiest method is to create different data frames separately and then concatenate them. The read_excel method takes argument sheet_name and index_col where we can specify the sheet of which the data frame should be made of and index_col specifies the title column, as is shown below: 

Python3

file =('path_of_excel_file')

newData = pds.read_excel(file)

newData

Output: 

Example: 

The third statement concatenates both sheets. Now to check the whole data frame, we can simply run the following command: 

Python3

sheet1 = pds.read_excel(file,

                        sheet_name = 0,

                        index_col = 0)

sheet2 = pds.read_excel(file,

                        sheet_name = 1,

                        index_col = 0)

newData = pds.concat([sheet1, sheet2])

newData

Output: 

To view 5 columns from the top and from the bottom of the data frame, we can run the command. This head() and tail() method also take arguments as numbers for the number of columns to show. 

Python3

newData.head()

newData.tail()

Output: 

The shape() method can be used to view the number of rows and columns in the data frame as follows: 

Python3

Output: 

If any column contains numerical data, we can sort that column using the sort_values() method in pandas as follows: 

Python3

sorted_column = newData.sort_values(['Height'], ascending = False)

Now, let’s suppose we want the top 5 values of the sorted column, we can use the head() method here: 

Python3

sorted_column['Height'].head(5)

Output: 

 We can do that with any numerical column of the data frame as shown below: 

Python3

Output: 

Now, suppose our data is mostly numerical. We can get the statistical information like mean, max, min, etc. about the data frame using the describe() method as shown below: 

Python3

Output: 

This can also be done separately for all the numerical columns using the following command: 

Python3

Output: 

Other statistical information can also be calculated using the respective methods. Like in excel, formulas can also be applied and calculated columns can be created as follows: 

Python3

newData['calculated_column'] =

                newData[“Height”] + newData[“Weight”]

newData['calculated_column'].head()

Output: 

After operating on the data in the data frame, we can export the data back to an excel file using the method to_excel. For this we need to specify an output excel file where the transformed data is to be written, as shown below: 

Python3

newData.to_excel('Output File.xlsx')

Output: 

Pandas можно использовать для чтения и записи файлов Excel с помощью Python. Это работает по аналогии с другими форматами. В этом материале рассмотрим, как это делается с помощью DataFrame.

Помимо чтения и записи рассмотрим, как записывать несколько DataFrame в Excel-файл, как считывать определенные строки и колонки из таблицы и как задавать имена для одной или нескольких таблиц в файле.

Установка Pandas

Для начала Pandas нужно установить. Проще всего это сделать с помощью pip.

Если у вас Windows, Linux или macOS:

pip install pandas # или pip3

В процессе можно столкнуться с ошибками ModuleNotFoundError или ImportError при попытке запустить этот код. Например:

ModuleNotFoundError: No module named 'openpyxl'

В таком случае нужно установить недостающие модули:

pip install openpyxl xlsxwriter xlrd  # или pip3

Будем хранить информацию, которую нужно записать в файл Excel, в DataFrame. А с помощью встроенной функции to_excel() ее можно будет записать в Excel.

Сначала импортируем модуль pandas. Потом используем словарь для заполнения DataFrame:


import pandas as pd

df = pd.DataFrame({'Name': ['Manchester City', 'Real Madrid', 'Liverpool',
'FC Bayern München', 'FC Barcelona', 'Juventus'],
'League': ['English Premier League (1)', 'Spain Primera Division (1)',
'English Premier League (1)', 'German 1. Bundesliga (1)',
'Spain Primera Division (1)', 'Italian Serie A (1)'],
'TransferBudget': [176000000, 188500000, 90000000,
100000000, 180500000, 105000000]})

Ключи в словаре — это названия колонок. А значения станут строками с информацией.

Теперь можно использовать функцию to_excel() для записи содержимого в файл. Единственный аргумент — это путь к файлу:


df.to_excel('./teams.xlsx')

А вот и созданный файл Excel:

файл Excel в python

Стоит обратить внимание на то, что в этом примере не использовались параметры. Таким образом название листа в файле останется по умолчанию — «Sheet1». В файле может быть и дополнительная колонка с числами. Эти числа представляют собой индексы, которые взяты напрямую из DataFrame.

Поменять название листа можно, добавив параметр sheet_name в вызов to_excel():


df.to_excel('./teams.xlsx', sheet_name='Budgets', index=False)

Также можно добавили параметр index со значением False, чтобы избавиться от колонки с индексами. Теперь файл Excel будет выглядеть следующим образом:

Чтение и запись файлов Excel (XLSX) в Python

Запись нескольких DataFrame в файл Excel

Также есть возможность записать несколько DataFrame в файл Excel. Для этого можно указать отдельный лист для каждого объекта:


salaries1 = pd.DataFrame({'Name': ['L. Messi', 'Cristiano Ronaldo', 'J. Oblak'],
'Salary': [560000, 220000, 125000]})

salaries2 = pd.DataFrame({'Name': ['K. De Bruyne', 'Neymar Jr', 'R. Lewandowski'],
'Salary': [370000, 270000, 240000]})

salaries3 = pd.DataFrame({'Name': ['Alisson', 'M. ter Stegen', 'M. Salah'],
'Salary': [160000, 260000, 250000]})

salary_sheets = {'Group1': salaries1, 'Group2': salaries2, 'Group3': salaries3}
writer = pd.ExcelWriter('./salaries.xlsx', engine='xlsxwriter')

for sheet_name in salary_sheets.keys():
salary_sheets[sheet_name].to_excel(writer, sheet_name=sheet_name, index=False)

writer.save()

Здесь создаются 3 разных DataFrame с разными названиями, которые включают имена сотрудников, а также размер их зарплаты. Каждый объект заполняется соответствующим словарем.

Объединим все три в переменной salary_sheets, где каждый ключ будет названием листа, а значение — объектом DataFrame.

Дальше используем движок xlsxwriter для создания объекта writer. Он и передается функции to_excel().

Перед записью пройдемся по ключам salary_sheets и для каждого ключа запишем содержимое в лист с соответствующим именем. Вот сгенерированный файл:

Чтение и запись файлов Excel (XLSX) в Python

Можно увидеть, что в этом файле Excel есть три листа: Group1, Group2 и Group3. Каждый из этих листов содержит имена сотрудников и их зарплаты в соответствии с данными в трех DataFrame из кода.

Параметр движка в функции to_excel() используется для определения модуля, который задействуется библиотекой Pandas для создания файла Excel. В этом случае использовался xslswriter, который нужен для работы с классом ExcelWriter. Разные движка можно определять в соответствии с их функциями.

В зависимости от установленных в системе модулей Python другими параметрами для движка могут быть openpyxl (для xlsx или xlsm) и xlwt (для xls). Подробности о модуле xlswriter можно найти в официальной документации.

Наконец, в коде была строка writer.save(), которая нужна для сохранения файла на диске.

Чтение файлов Excel с python

По аналогии с записью объектов DataFrame в файл Excel, эти файлы можно и читать, сохраняя данные в объект DataFrame. Для этого достаточно воспользоваться функцией read_excel():


top_players = pd.read_excel('./top_players.xlsx')
top_players.head()

Содержимое финального объекта можно посмотреть с помощью функции head().

Примечание:

Этот способ самый простой, но он и способен прочесть лишь содержимое первого листа.

Посмотрим на вывод функции head():

Name Age Overall Potential Positions Club
0 L. Messi 33 93 93 RW,ST,CF FC Barcelona
1 Cristiano Ronaldo 35 92 92 ST,LW Juventus
2 J. Oblak 27 91 93 GK Atlético Madrid
3 K. De Bruyne 29 91 91 CAM,CM Manchester City
4 Neymar Jr 28 91 91 LW,CAM Paris Saint-Germain

Pandas присваивает метку строки или числовой индекс объекту DataFrame по умолчанию при использовании функции read_excel().

Это поведение можно переписать, передав одну из колонок из файла в качестве параметра index_col:


top_players = pd.read_excel('./top_players.xlsx', index_col='Name')
top_players.head()

Результат будет следующим:

Name Age Overall Potential Positions Club
L. Messi 33 93 93 RW,ST,CF FC Barcelona
Cristiano Ronaldo 35 92 92 ST,LW Juventus
J. Oblak 27 91 93 GK Atlético Madrid
K. De Bruyne 29 91 91 CAM,CM Manchester City
Neymar Jr 28 91 91 LW,CAM Paris Saint-Germain

В этом примере индекс по умолчанию был заменен на колонку «Name» из файла. Однако этот способ стоит использовать только при наличии колонки со значениями, которые могут стать заменой для индексов.

Чтение определенных колонок из файла Excel

Иногда удобно прочитать содержимое файла целиком, но бывают случаи, когда требуется получить доступ к определенному элементу. Например, нужно считать значение элемента и присвоить его полю объекта.

Это делается с помощью функции read_excel() и параметра usecols. Например, можно ограничить функцию, чтобы она читала только определенные колонки. Добавим параметр, чтобы он читал колонки, которые соответствуют значениям «Name», «Overall» и «Potential».

Для этого укажем числовой индекс каждой колонки:


cols = [0, 2, 3]

top_players = pd.read_excel('./top_players.xlsx', usecols=cols)
top_players.head()

Вот что выдаст этот код:

Name Overall Potential
0 L. Messi 93 93
1 Cristiano Ronaldo 92 92
2 J. Oblak 91 93
3 K. De Bruyne 91 91
4 Neymar Jr 91 91

Таким образом возвращаются лишь колонки из списка cols.

В DataFrame много встроенных возможностей. Легко изменять, добавлять и агрегировать данные. Даже можно строить сводные таблицы. И все это сохраняется в Excel одной строкой кода.

Рекомендую изучить DataFrame в моих уроках по Pandas.

Выводы

В этом материале были рассмотрены функции read_excel() и to_excel() из библиотеки Pandas. С их помощью можно считывать данные из файлов Excel и выполнять запись в них. С помощью различных параметров есть возможность менять поведение функций, создавая нужные файлы, не просто копируя содержимое из объекта DataFrame.

Хотя многие Data Scientist’ы больше привыкли работать с CSV-файлами, на практике очень часто приходится сталкиваться с обычными Excel-таблицами. Поэтому сегодня мы расскажем, как читать Excel-файлы в Pandas, а также рассмотрим основные возможности Python-библиотеки OpenPyXL для чтения метаданных ячеек.

Дополнительные зависимости для возможности чтения Excel таблиц

Для чтения таблиц Excel в Pandas требуются дополнительные зависимости:

  • xlrd поддерживает старые и новые форматы MS Excel [1];
  • OpenPyXL поддерживает новые форматы MS Excel (.xlsx) [2];
  • ODFpy поддерживает свободные форматы OpenDocument (.odf, .ods и .odt) [3];
  • pyxlsb поддерживает бинарные MS Excel файлы (формат .xlsb) [4].

Мы рекомендуем установить только OpenPyXL, поскольку он нам пригодится в дальнейшем. Для этого в командной строке прописывается следующая операция:

pip install openpyxl

Затем в Pandas нужно указать путь к Excel-файлу и одну из установленных зависимостей. Python-код выглядит следующим образом:

import pandas as pd
pd.read_excel(io='temp1.xlsx', engine='openpyxl')
#
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64

Читаем несколько листов

Excel-файл может содержать несколько листов. В Pandas, чтобы прочитать конкретный лист, в аргументе нужно указать sheet_name. Можно указать список названий листов, тогда Pandas вернет словарь (dict) с объектами DataFrame:

dfs = pd.read_excel(io='temp1.xlsx',
                    engine='openpyxl',
                    sheet_name=['Sheet1', 'Sheet2'])
dfs
#
{'Sheet1':      Name  Age  Weight
 0    Alex   35      87
 1   Lesha   57      72
 2  Nastya   21      64,
 'Sheet2':     Name  Age  Weight
 0  Gosha   43      95
 1   Anna   24      65
 2   Lena   22      78}

Если таблицы в словаре имеют одинаковые атрибуты, то их можно объединить в один DataFrame. В Python это выглядит так:

pd.concat(dfs).reset_index(drop=True)
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64
3   Gosha   43      95
4    Anna   24      65
5    Lena   22      78

Указание диапазонов

Таблицы могут размещаться не в самом начале, а как, например, на рисунке ниже. Как видим, таблица располагается в диапазоне A:F.

Таблица Excel

Таблица с диапазоном

Чтобы прочитать такую таблицу, нужно указать диапазон в аргументе usecols. Также дополнительно можно добавить header — номер заголовка таблицы, а также nrows — количество строк, которые нужно прочитать. В аргументе header всегда передается номер строки на единицу меньше, чем в Excel-файле, поскольку в Python индексация начинается с 0 (на рисунке это номер 5, тогда указываем 4):

pd.read_excel(io='temp1.xlsx',
              engine='openpyxl',
              usecols='D:F',
              header=4, # в excel это №5
              nrows=3)
#
    Name  Age  Weight
0  Gosha   43      95
1   Anna   24      65
2   Lena   22      78

Читаем таблицы в OpenPyXL

Pandas прочитывает только содержимое таблицы, но игнорирует метаданные: цвет заливки ячеек, примечания, стили таблицы и т.д. В таком случае пригодится библиотека OpenPyXL. Загрузка файлов осуществляется через функцию load_workbook, а к листам обращаться можно через квадратные скобки:

from openpyxl import load_workbook
wb = load_workbook('temp2.xlsx')
ws = wb['Лист1']
type(ws)
# openpyxl.worksheet.worksheet.Worksheet

Excel-таблица OpenPyXL

Две таблицы на листе

Допустим, имеется Excel-файл с несколькими таблицами на листе (см. рисунок выше). Если бы мы использовали Pandas, то он бы выдал следующий результат:

pd.read_excel(io='temp2.xlsx',
              engine='openpyxl')
#
     Name  Age  Weight  Unnamed: 3 Name.1  Age.1  Weight.1
0    Alex   35      87         NaN  Tanya     25        66
1   Lesha   57      72         NaN  Gosha     43        77
2  Nastya   21      64         NaN  Tolya     32        54

Можно, конечно, заняться обработкой и привести таблицы в нормальный вид, а можно воспользоваться OpenPyXL, который хранит таблицу и его диапазон в словаре. Чтобы посмотреть этот словарь, нужно вызвать ws.tables.items. Вот так выглядит Python-код:

ws.tables.items()
wb = load_workbook('temp2.xlsx')
ws = wb['Лист1']
ws.tables.items()
#
[('Таблица1', 'A1:C4'), ('Таблица13', 'E1:G4')]

Обращаясь к каждому диапазону, можно проходить по каждой строке или столбцу, а внутри них – по каждой ячейке. Например, следующий код на Python таблицы объединяет строки в список, где первая строка уходит на заголовок, а затем преобразует их в DataFrame:

dfs = []
for table_name, value in ws.tables.items():
    table = ws[value]
    header, *body = [[cell.value for cell in row]
                      for row in table]
    df = pd.DataFrame(body, columns=header)
    dfs.append(df)

Если таблицы имеют одинаковые атрибуты, то их можно соединить в одну:

pd.concat(dfs)
#
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64
0   Tanya   25      66
1   Gosha   43      77
2   Tolya   32      54

Сохраняем метаданные таблицы

Как указано в коде выше, у ячейки OpenPyXL есть атрибут value, который хранит ее значение. Помимо value, можно получить тип ячейки (data_type), цвет заливки (fill), примечание (comment) и др.

Excel OpenPyXL

Таблица с цветными ячейками

Например, требуется сохранить данные о цвете ячеек. Для этого мы каждую ячейку с числами перезапишем в виде <значение,RGB>, где RGB — значение цвета в формате RGB (red, green, blue). Python-код выглядит следующим образом:

# _TYPES = {int:'n', float:'n', str:'s', bool:'b'}
data = []
for row in ws.rows:
    row_cells = []
    for cell in row:
        cell_value = cell.value
        if cell.data_type == 'n':
            cell_value = f"{cell_value},{cell.fill.fgColor.rgb}"
        row_cells.append(cell_value)
    data.append(row_cells)

Первым элементом списка является строка-заголовок, а все остальное уже значения таблицы:

pd.DataFrame(data[1:], columns=data[0])
#
     Name          Age       Weight
0    Alex  35,00000000  87,00000000
1   Lesha  57,00000000  72,FFFF0000
2  Nastya  21,FF00A933  64,00000000

Теперь представим атрибуты в виде индексов с помощью метода stack, а после разобьём все записи на значение и цвет методом str.split:

(pd.DataFrame(data[1:], columns=data[0])
 .set_index('Name')
 .stack()
 .str.split(',', expand=True)
)
#
                0         1
Name                       
Alex   Age     35  00000000
       Weight  87  00000000
Lesha  Age     57  00000000
       Weight  72  FFFF0000
Nastya Age     21  FF00A933
       Weight  64  0000000

Осталось только переименовать 0 и 1 на Value и Color, а также добавить атрибут Variable, который обозначит Вес и Возраст. Полный код на Python выглядит следующим образом:

(pd.DataFrame(data[1:], columns=data[0])
 .set_index('Name')
 .stack()
 .str.split(',', expand=True)
 .set_axis(['Value', 'Color'], axis=1)
 .rename_axis(index=['Name', 'Variable'])
 .reset_index()
)
#
     Name Variable Value     Color
0    Alex      Age    35  00000000
1    Alex   Weight    87  00000000
2   Lesha      Age    57  00000000
3   Lesha   Weight    72  FFFF0000
4  Nastya      Age    21  FF00A933
5  Nastya   Weight    64  00000000

Ещё больше подробностей о работе с таблицами в Pandas, а также их обработке на реальных примерах Data Science задач, вы узнаете на наших курсах по Python в лицензированном учебном центре обучения и повышения квалификации IT-специалистов в Москве.

Источники

  1. https://xlrd.readthedocs.io/en/latest/
  2. https://openpyxl.readthedocs.io/en/latest/
  3. https://github.com/eea/odfpy
  4. https://github.com/willtrnr/pyxlsb

Зарегистрируйтесь для доступа к 15+ бесплатным курсам по программированию с тренажером

Для работы с табличными данными часто используют продукт Microsoft Excel. В таблицы Excel помещают как списки покупок, так и отчетности компаний. Благодаря распространенности данного формата разработчики создали инструменты для атоматизации обработки данных.

Pandas является средством работы с табличными данными и умеет работать с файлами формата Excel-таблиц: .xls и .xlsx. И каждый разработчик должен уметь работать с такими форматами наравне с текстовыми файлами и файлами формата json и html.

В этом уроке мы познакомимся с основными методами библиотеки Pandas для работы с табличными данными в формате Microsoft Excel: .xls и .xlsx. Мы научимся их читать и записывать. Также мы разберем работу с файлами, в которых есть несколько листов, а также форматированию данных при записи.

Обработка Excel файлов в Python

Среди форматов файлов Excel наиболее популярными являются:

  • .xls — использовался в версиях Microsoft Excel до 2007
  • .xlsx — используется во всех версиях после 2007

Для работы с обоими типами в Python есть ряд открытых библиотек:

  • xlwt
  • openpyxl
  • XlsxWriter
  • xlrd

В библиотеке Pandas не реализован свой функционал работы с Excel-файлами, но есть единый интерфейс для работы с каждой из указанных выше библиотек.

Чтобы использовать этот функционал, нужно установить указанные библиотеки в окружение, в котором установлена библиотека Pandas. Библиотеки не являются взаимозаменяемыми и дополняют друг друга — лучше установить их все.

Чтение таблиц из Excel файлов

Чтобы читать файлы в Pandas, используется метод read_excel(). Ему на вход подается путь к читаемому файлу:

import pandas as pd
df_orders = pd.read_excel('data_read/Shop_orders_one_week.xlsx')
print(df_orders.head())
# =>    weekday shop_1  shop_2  shop_3  shop_4
#     0     mon     7       1       7       8
#     1     tue     4       2       4       5
#     2     wed     3       5       2       3
#     3     thu     8       12      8       7
#     4     fri     15      11      13      9
#     5     sat     21      18      17      21
#     6     sun     25      16      25      17

В примере выше прочитан файл продаж четырех магазинов за неделю и размещен в объекте DataFrame. Pandas по умолчанию добавил столбец индексов — последовательность целых чисел от 0 до 6.

Чтобы указать, какой из столбцов является столбцом индексов, необходимо указать его номер в параметре index_col. В нашем случае это первый столбец, в котором указаны дни недели:

df_orders = pd.read_excel('data_read/Shop_orders_one_week.xlsx', index_col=0)
print(df_orders.head())
# =>    shop_1  shop_2  shop_3  shop_4
# weekday
# mon       7   1   7   8
# tue       4   2   4   5
# wed       3   5   2   3
# thu       8   12  8   7
# fri       15  11  13  9
# sat       21  18  17  21
# sun       25  16  25  17

Если перед таблицей некоторые строки содержали записи, то попытка прочтения не приведет к ожидаемому результату. Pandas будет стараться положить данные в строках до таблицы в качестве индексов столбцов:

df_orders = pd.read_excel('data_read/Shop_orders_one_week_with_head.xlsx')
print(df_orders.head())
# => Orders by shop Unnamed: 1 Unnamed: 2 Unnamed: 3 Unnamed: 4
# 0            NaN        NaN        NaN        NaN        NaN
# 1        weekday     shop_1     shop_2     shop_3     shop_4
# 2            mon          7          1          7          8
# 3            tue          4          2          4          5
# 4            wed          3          5          2          3

Для корректного прочтения необходимо пропустить некоторое количество строк при прочтении. Для этого нужно использовать параметр skiprows и указать количество пропускаемых строк:

df_orders = pd.read_excel('data_read/Shop_orders_one_week_with_head.xlsx', skiprows=2)
print(df_orders.head())
# => weekday  shop_1  shop_2  shop_3  shop_4
#  0     mon       7       1       7       8
#  1     tue       4       2       4       5
#  2     wed       3       5       2       3
#  3     thu       8      12       8       7
#  4     fri      15      11      13       9

Итоговый вариант корректного чтения, где пропущены две строки и использован один столбец в качестве столбца индексов, выглядит следующим образом:

df_orders = pd.read_excel('data_read/Shop_orders_one_week_with_head.xls', skiprows=2, index_col=0)
print(df_orders.head())
# =>       shop_1  shop_2  shop_3  shop_4
# weekday
# mon           7       1       7       8
# tue           4       2       4       5
# wed           3       5       2       3
# thu           8      12       8       7
# fri          15      11      13       9

Запись таблиц в Excel файл

Также в Excel-файл можно записывать результаты работы программы. Эту задачу можно разделить на два типа по сложности используемого синтаксиса:

  • Быстрая запись на один лист — записывается одна таблица, которая будет размещена на одном листе файла Excel
  • Создание файла с несколькими листами — если результаты работы программы располагаются в нескольких итоговых таблицах, то для формирования единого файла Excel с несколькими листами потребуется применить определенные правила создания

Быстрая запись на один лист

В качестве результатов работы программы используем среднее по магазинам за неделю:

df_orders_mean = pd.DataFrame(df_orders.mean()).T.round(1)
df_orders_mean.index = ['mean']
print(df_orders_mean)
# =>    shop_1  shop_2  shop_3  shop_4
# mean    11.9     9.3    10.9    10.0

Сформируем итоговую таблицу на основе исходной и добавим аналитические результаты:

df_analitic_results = pd.concat([
    df_orders,
    df_orders_mean
])
print(df_analitic_results)
# =>    shop_1  shop_2  shop_3  shop_4
# mon      7.0     1.0     7.0     8.0
# tue      4.0     2.0     4.0     5.0
# wed      3.0     5.0     2.0     3.0
# thu      8.0    12.0     8.0     7.0
# fri     15.0    11.0    13.0     9.0
# sat     21.0    18.0    17.0    21.0
# sun     25.0    16.0    25.0    17.0
# mean    11.9     9.3    10.9    10.0

Чтобы быстро записать данную таблицу, достаточно воспользоваться методом to_excel(). Формат файла .xls или .xlsx необходимо указать в расширении файла. Pandas автоматически определит, какой библиотекой воспользоваться для конкретного формата:

df_analitic_results.to_excel('data_read/Shop_orders_one_week_analitics.xlsx')
df_analitic_results.to_excel('data_read/Shop_orders_one_week_analitics.xls')

Создание файла с несколькими листами

Чтобы задать имя листа, на котором располагается таблица, необходимо указать его в параметре sheet_name. В данном примере получится лист Total:

path_for_analitic_results = 'data_read/Shop_orders_one_week_analitics.xlsx'
df_analitic_results.to_excel(
    path_for_analitic_results,
    sheet_name='Total'
)

Попробуем добавить к сформированному файлу лист итогов только для первого магазина:

df_analitic_results[['shop_1']].to_excel(
    path_for_analitic_results,
    sheet_name='shop_1',
)

Все выполнено без ошибок, но в итоговом файле листа Total нет. Чтобы перезаписать файл и удалить предыдущий, вызовем функцию to_excel().

Для корректной записи или дозаписи нужно использовать следующую конструкцию. В одном файле запишем итоговую таблицу на один лист, а для каждого магазина создадим отдельный лист только с его итогами:

with pd.ExcelWriter(
        path_for_analitic_results,
        engine="xlsxwriter",
        mode='w') as excel_writer:
    # Add total df
    df_analitic_results.to_excel(excel_writer, sheet_name='Total')
    # Add all shop df results
    for shop_name in df_analitic_results.columns.to_list():
        df_analitic_results[[shop_name]].to_excel(excel_writer, sheet_name=shop_name)

В коде выше создается экземпляр класса ExcelWriter на «движке» библиотеки xlsxwriter. Далее мы используем инициализированный экземпляр excel_writer в качестве первого параметра метода to_excel(). Конструкция with...as... позволяет безопасно работать с потоком данных и закрыть файл, даже когда возникают ошибки записи.

Чтение таблиц из Excel файлов с несколькими листами

Чтобы прочитать файл с несколькими листами, не хватит метода read_excel(), поскольку будет прочитан только первый лист из файла:

df_analitic_results_from_file = pd.read_excel(path_for_analitic_results, index_col=0)
print(df_analitic_results_from_file)
# =>    shop_1  shop_2  shop_3  shop_4
# mon      7.0     1.0     7.0       8
# tue      4.0     2.0     4.0       5
# wed      3.0     5.0     2.0       3
# thu      8.0    12.0     8.0       7
# fri     15.0    11.0    13.0       9
# sat     21.0    18.0    17.0      21
# sun     25.0    16.0    25.0      17
# mean    11.9     9.3    10.9      10

При этом можно прочитать конкретный лист, если указать его название в параметре sheet_name:

df_analitic_results_from_file = pd.read_excel(path_for_analitic_results, index_col=0, sheet_name='shop_1')
print(df_analitic_results_from_file)
# =>    shop_1
# mon      7.0
# tue      4.0
# wed      3.0
# thu      8.0
# fri     15.0
# sat     21.0
# sun     25.0
# mean    11.9

Чтобы прочитать несколько листов и не переоткрывать файл, достаточно использовать экземпляр класса ExcelFile и его метод parse(). В последнем указывается имя нужного листа и дополнительные параметры чтения, аналогичные методу read_excel().

excel_reader = pd.ExcelFile(path_for_analitic_results)
df_shop_1 = excel_reader.parse('shop_1', index_col=0)
df_shop_2 = excel_reader.parse('shop_2', index_col=0)
print(df_shop_1)
print(df_shop_2)
# =>    shop_1
# mon      7.0
# tue      4.0
# wed      3.0
# thu      8.0
# fri     15.0
# sat     21.0
# sun     25.0
# mean    11.9
#       shop_2
# mon      1.0
# tue      2.0
# wed      5.0
# thu     12.0
# fri     11.0
# sat     18.0
# sun     16.0
# mean     9.3

Данный подход для чтения файла Excel удобен, чтобы получить список всех листов. Для этого нужно посмотреть на атрибут sheet_names:

print(excel_reader.sheet_names)
# => ['Total', 'shop_1', 'shop_2', 'shop_3', 'shop_4']

Если использовать наработки выше, можно собрать словарь из датафреймов, в которых будут располагаться все таблицы файла. Чтобы получить нужный датафрейм, нужно обратиться к словарю по ключу с соответствующим названием листа:

sheet_to_df_map = {}
for sheet_name in excel_reader.sheet_names:
    sheet_to_df_map[sheet_name] = excel_reader.parse(sheet_name, index_col=0)
print(sheet_to_df_map['shop_1'])
print(sheet_to_df_map['Total'])
# =>    shop_1
# mon      7.0
# tue      4.0
# wed      3.0
# thu      8.0
# fri     15.0
# sat     21.0
# sun     25.0
# mean    11.9
#       shop_1  shop_2  shop_3  shop_4
# mon      7.0     1.0     7.0       8
# tue      4.0     2.0     4.0       5
# wed      3.0     5.0     2.0       3
# thu      8.0    12.0     8.0       7
# fri     15.0    11.0    13.0       9
# sat     21.0    18.0    17.0      21
# sun     25.0    16.0    25.0      17
# mean    11.9     9.3    10.9      10

Форматирование таблиц

За время своего развития Excel накопил довольно мощный функционал, чтобы анализировать и презентовать данные: создание графиков, цветовая подсветка результатов по условию, настройка шрифтов и многое другое.

В примере ниже мы форматируем итоговые аналитические данные: если значения в таблице превышают порог в одиннадцать заказов, то они раскрашиваются в один цвет, иначе — в другой. Цветовая дифференциация данных удобна, чтобы быстро оценивать результаты и искать закономерности в данных:

with pd.ExcelWriter(
        path_for_analitic_results,
        engine="xlsxwriter",
        mode='w') as excel_writer:

    # Add total df
    df_analitic_results.to_excel(excel_writer, sheet_name='Total')
    # Formatting total df
    threshold = 11
    workbook = excel_writer.book
    worksheet = excel_writer.sheets['Total']
    format1 = workbook.add_format({'bg_color': '#FFC7CD',
                                'font_color': '#9C0006'})
    format2 = workbook.add_format({'bg_color': '#C6EFCD',
                                'font_color': '#006100'})

    worksheet.conditional_format('B2:E9', {
            'type' : 'cell',
            'criteria' : '>=',
            'value' : threshold,
            'format' : format1}
    )
    worksheet.conditional_format('B2:E9', {
            'type' : 'cell',
            'criteria' : '<',
            'value' : threshold,
            'format' : format2}
    )

В примере выше используются методы движка xlsxwriter. Разбор всех возможностей форматирования данных при записи выходит за рамки данного урока. Можно глубже погрузиться в данную тему через документацию с примерами по следующей ссылке.

Выводы

В Python данные из файла Excel считываются в объект DataFrame. Для этого используется функция read_excel() модуля pandas.

Лист Excel — это двухмерная таблица. Объект DataFrame также представляет собой двухмерную табличную структуру данных.

  • Пример использования Pandas read_excel()
  • Список заголовков столбцов листа Excel
  • Вывод данных столбца
  • Пример использования Pandas to Excel: read_excel()
  • Чтение файла Excel без строки заголовка
  • Лист Excel в Dict, CSV и JSON
  • Ресурсы

Пример использования Pandas read_excel()

Предположим, что у нас есть документ Excel, состоящий из двух листов: «Employees» и «Cars». Верхняя строка содержит заголовок таблицы.

Пример использования Pandas read_excel() - 2

Ниже приведен код, который считывает данные листа «Employees» и выводит их.

import pandas

excel_data_df = pandas.read_excel('records.xlsx', sheet_name='Employees')

# print whole sheet data
print(excel_data_df)

Вывод:

   EmpID    EmpName EmpRole
0      1     Pankaj     CEO
1      2  David Lee  Editor
2      3   Lisa Ray  Author

Первый параметр, который принимает функция read_excel ()— это имя файла Excel. Второй параметр (sheet_name) определяет лист для считывания данных.

При выводе содержимого объекта DataFrame мы получаем двухмерные таблицы, схожие по своей структуре со структурой документа Excel.

Чтобы получить список заголовков столбцов таблицы, используется свойство columns объекта Dataframe. Пример реализации:

print(excel_data_df.columns.ravel())

Вывод:

['Pankaj', 'David Lee', 'Lisa Ray']

Мы можем получить данные из столбца и преобразовать их в список значений. Пример:

print(excel_data_df['EmpName'].tolist())

Вывод:

['Pankaj', 'David Lee', 'Lisa Ray']

Можно указать имена столбцов для чтения из файла Excel. Это потребуется, если нужно вывести данные из определенных столбцов таблицы.

import pandas

excel_data_df = pandas.read_excel('records.xlsx', sheet_name='Cars', usecols=['Car Name', 'Car Price'])
print(excel_data_df)

Вывод:

         Car Name      Car Price
0      Honda City     20,000 USD
1  Bugatti Chiron  3 Million USD
2     Ferrari 458   2,30,000 USD

Если в листе Excel нет строки заголовка, нужно передать его значение как None.

excel_data_df = pandas.read_excel('records.xlsx', sheet_name='Numbers', header=None)

Если вы передадите значение заголовка как целое число (например, 3), тогда третья строка станет им. При этом считывание данных начнется со следующей строки. Данные, расположенные перед строкой заголовка, будут отброшены.

Объект DataFrame предоставляет различные методы для преобразования табличных данных в формат Dict , CSV или JSON.

excel_data_df = pandas.read_excel('records.xlsx', sheet_name='Cars', usecols=['Car Name', 'Car Price'])

print('Excel Sheet to Dict:', excel_data_df.to_dict(orient='record'))
print('Excel Sheet to JSON:', excel_data_df.to_json(orient='records'))
print('Excel Sheet to CSV:n', excel_data_df.to_csv(index=False))

Вывод:

Excel Sheet to Dict: [{'Car Name': 'Honda City', 'Car Price': '20,000 USD'}, {'Car Name': 'Bugatti Chiron', 'Car Price': '3 Million USD'}, {'Car Name': 'Ferrari 458', 'Car Price': '2,30,000 USD'}]
Excel Sheet to JSON: [{"Car Name":"Honda City","Car Price":"20,000 USD"},{"Car Name":"Bugatti Chiron","Car Price":"3 Million USD"},{"Car Name":"Ferrari 458","Car Price":"2,30,000 USD"}]
Excel Sheet to CSV:
 Car Name,Car Price
Honda City,"20,000 USD"
Bugatti Chiron,3 Million USD
Ferrari 458,"2,30,000 USD"
  • Документы API pandas read_excel()

Дайте знать, что вы думаете по этой теме материала в комментариях. Мы крайне благодарны вам за ваши комментарии, дизлайки, подписки, лайки, отклики!

Узнайте, как читать и импортировать файлы Excel в Python, как записывать данные в эти таблицы и какие библиотеки лучше всего подходят для этого.

Известный вам инструмент для организации, анализа и хранения ваших данных в таблицах — Excel — применяется и в data science. В какой-то момент вам придется иметь дело с этими таблицами, но работать именно с ними вы будете не всегда. Вот почему разработчики Python реализовали способы чтения, записи и управления не только этими файлами, но и многими другими типами файлов.

Из этого учебника узнаете, как можете работать с Excel и Python. Внутри найдете обзор библиотек, которые вы можете использовать для загрузки и записи этих таблиц в файлы с помощью Python. Вы узнаете, как работать с такими библиотеками, как pandas, openpyxl, xlrd, xlutils и pyexcel.

Данные как ваша отправная точка

Когда вы начинаете проект по data science, вам придется работать с данными, которые вы собрали по всему интернету, и с наборами данных, которые вы загрузили из других мест — Kaggle, Quandl и тд

Но чаще всего вы также найдете данные в Google или в репозиториях, которые используются другими пользователями. Эти данные могут быть в файле Excel или сохранены в файл с расширением .csv … Возможности могут иногда казаться бесконечными, но когда у вас есть данные, в первую очередь вы должны убедиться, что они качественные.

В случае с электронной таблицей вы можете не только проверить, могут ли эти данные ответить на вопрос исследования, который вы имеете в виду, но также и можете ли вы доверять данным, которые хранятся в электронной таблице.

Проверяем качество таблицы

  • Представляет ли электронная таблица статические данные?
  • Смешивает ли она данные, расчеты и отчетность?
  • Являются ли данные в вашей электронной таблице полными и последовательными?
  • Имеет ли ваша таблица систематизированную структуру рабочего листа?
  • Проверяли ли вы действительные формулы в электронной таблице?

Этот список вопросов поможет убедиться, что ваша таблица не грешит против лучших практик, принятых в отрасли. Конечно, этот список не исчерпывающий, но позволит провести базовую проверку таблицы.

Лучшие практики для данных электронных таблиц

Прежде чем приступить к чтению вашей электронной таблицы на Python, вы также должны подумать о том, чтобы настроить свой файл в соответствии с некоторыми основными принципами, такими как:

  • Первая строка таблицы обычно зарезервирована для заголовка, а первый столбец используется для идентификации единицы выборки;
  • Избегайте имен, значений или полей с пробелами. В противном случае каждое слово будет интерпретироваться как отдельная переменная, что приведет к ошибкам, связанным с количеством элементов на строку в вашем наборе данных. По возможности, используйте:
  • подчеркивания,
  • тире,
  • горбатый регистр, где первая буква каждого слова пишется с большой буквы
  • объединяющие слова
  • Короткие имена предпочтительнее длинных имен;
  • старайтесь не использовать имена, которые содержат символы ?, $,%, ^, &, *, (,), -, #,? ,,, <,>, /, |, , [,], {, и };
  • Удалите все комментарии, которые вы сделали в вашем файле, чтобы избежать добавления в ваш файл лишних столбцов или NA;
  • Убедитесь, что все пропущенные значения в вашем наборе данных обозначены как NA.

Затем, после того, как вы внесли необходимые изменения или тщательно изучили свои данные, убедитесь, что вы сохранили внесенные изменения. Сделав это, вы можете вернуться к данным позже, чтобы отредактировать их, добавить дополнительные данные или изменить их, сохранив формулы, которые вы, возможно, использовали для расчета данных и т.д.

Если вы работаете с Microsoft Excel, вы можете сохранить файл в разных форматах: помимо расширения по умолчанию .xls или .xlsx, вы можете перейти на вкладку «Файл», нажать «Сохранить как» и выбрать одно из расширений, которые указаны в качестве параметров «Сохранить как тип». Наиболее часто используемые расширения для сохранения наборов данных в data science — это .csv и .txt (в виде текстового файла с разделителями табуляции). В зависимости от выбранного варианта сохранения поля вашего набора данных разделяются вкладками или запятыми, которые образуют символы-разделители полей вашего набора данных.

Теперь, когда вы проверили и сохранили ваши данные, вы можете начать с подготовки вашего рабочего окружения.

Готовим рабочее окружение

Как убедиться, что вы все делаете хорошо? Проверить рабочее окружение!

Когда вы работаете в терминале, вы можете сначала перейти в каталог, в котором находится ваш файл, а затем запустить Python. Убедитесь, что файл лежит именно в том каталоге, к которому вы обратились.

Возможно, вы уже начали сеанс Python и у вас нет подсказок о каталоге, в котором вы работаете. Тогда можно выполнить следующие команды:

# Import `os` 
import os

# Retrieve current working directory (`cwd`)
cwd = os.getcwd()
cwd

# Change directory 
os.chdir("/path/to/your/folder")

# List all files and directories in current directory
os.listdir('.')

Круто, да?

Вы увидите, что эти команды очень важны не только для загрузки ваших данных, но и для дальнейшего анализа. А пока давайте продолжим: вы прошли все проверки, вы сохранили свои данные и подготовили рабочее окружение.

Можете ли вы начать с чтения данных в Python?

Установите библиотеки для чтения и записи файлов Excel

Даже если вы еще не знаете, какие библиотеки вам понадобятся для импорта ваших данных, вы должны убедиться, что у вас есть все, что нужно для установки этих библиотек, когда придет время.

Подготовка к дополнительной рабочей области: pip

Вот почему вам нужно установить pip и setuptools. Если у вас установлен Python2 ⩾ 2.7.9 или Python3  ⩾ 3.4, то можно не беспокоиться — просто убедитесь, что вы обновились до последней версии.

Для этого выполните следующую команду в своем терминале:

# Для Linux/OS X
pip install -U pip setuptools

# Для Windows
python -m pip install -U pip setuptools

Если вы еще не установили pip, запустите скрипт python get-pip.py, который вы можете найти здесь. Следуйте инструкциям по установке.

Установка Anaconda

Другой вариант для работы в data science — установить дистрибутив Anaconda Python. Сделав это, вы получите простой и быстрый способ начать заниматься data science, потому что вам не нужно беспокоиться об установке отдельных библиотек, необходимых для работы.

Это особенно удобно, если вы новичок, но даже для более опытных разработчиков это способ быстро протестировать некоторые вещи без необходимости устанавливать каждую библиотеку отдельно.

Anaconda включает в себя 100 самых популярных библиотек Python, R и Scala для науки о данных и несколько сред разработки с открытым исходным кодом, таких как Jupyter и Spyder.

Установить Anaconda можно здесь. Следуйте инструкциям по установке, и вы готовы начать!

Загрузить файлы Excel в виде фреймов Pandas

Все, среда настроена, вы готовы начать импорт ваших файлов.

Один из способов, который вы часто используете для импорта ваших файлов для обработки данных, — с помощью библиотеки Pandas. Она основана на NumPy и предоставляет простые в использовании структуры данных и инструменты анализа данных Python.

Эта мощная и гибкая библиотека очень часто используется дата-инженерами для передачи своих данных в структуры данных, очень выразительных для их анализа.

Если у вас уже есть Pandas, доступные через Anaconda, вы можете просто загрузить свои файлы в Pandas DataFrames с помощью pd.Excelfile():

# импорт библиотеки pandas
import pandas as pd

# Загружаем ваш файл в переменную `file` / вместо 'example' укажите название свого файла из текущей директории
file = 'example.xlsx'

# Загружаем spreadsheet в объект pandas
xl = pd.ExcelFile(file)

# Печатаем название листов в данном файле
print(xl.sheet_names)

# Загрузить лист в DataFrame по его имени: df1
df1 = xl.parse('Sheet1')

Если вы не установили Anaconda, просто выполните pip install pandas, чтобы установить библиотеку Pandas в вашей среде, а затем выполните команды, которые включены в фрагмент кода выше.

Проще простого, да?

Для чтения в файлах .csv у вас есть аналогичная функция для загрузки данных в DataFrame: read_csv(). Вот пример того, как вы можете использовать эту функцию:

# Импорт библиотеки pandas
import pandas as pd

# Загрузить csv файл
df = pd.read_csv("example.csv") 

Разделитель, который будет учитывать эта функция, по умолчанию является запятой, но вы можете указать альтернативный разделитель, если хотите. Перейдите к документации, чтобы узнать, какие другие аргументы вы можете указать для успешного импорта!

Обратите внимание, что есть также функции read_table() и read_fwf() для чтения файлов и таблиц с фиксированной шириной в формате DataFrames с общим разделителем. Для первой функции разделителем по умолчанию является вкладка, но вы можете снова переопределить это, а также указать альтернативный символ-разделитель. Более того, есть и другие функции, которые вы можете использовать для получения данных в DataFrames: вы можете найти их здесь.

Как записать Pandas DataFrames в файлы Excel

Допустим, что после анализа данных вы хотите записать данные обратно в новый файл. Есть также способ записать ваши Pandas DataFrames обратно в файлы с помощью функции to_excel().

Но, прежде чем использовать эту функцию, убедитесь, что у вас установлен XlsxWriter, если вы хотите записать свои данные в несколько листов в файле .xlsx:

# Установим `XlsxWriter` 
pip install XlsxWriter

# Указать writer библиотеки
writer = pd.ExcelWriter('example.xlsx', engine='xlsxwriter')

# Записать ваш DataFrame в файл     
yourData.to_excel(writer, 'Sheet1')

# Сохраним результат 
writer.save()

Обратите внимание, что в приведенном выше фрагменте кода вы используете объект ExcelWriter для вывода DataFrame.

Иными словами, вы передаете переменную Writer в функцию to_excel() и также указываете имя листа. Таким образом, вы добавляете лист с данными в существующую рабочую книгу: вы можете использовать ExcelWriter для сохранения нескольких (немного) разных DataFrames в одной рабочей книге.

Все это означает, что если вы просто хотите сохранить один DataFrame в файл, вы также можете обойтись без установки пакета XlsxWriter. Затем вы просто не указываете аргумент движка, который вы передаете в функцию pd.ExcelWriter(). Остальные шаги остаются прежними.

Аналогично функциям, которые вы использовали для чтения в файлах .csv, у вас также есть функция to_csv() для записи результатов обратно в файл, разделенный запятыми. Он снова работает так же, как когда вы использовали его для чтения в файле:

# Запишите DataFrame в csv
df.to_csv("example.csv")

Если вы хотите иметь файл, разделенный табуляцией, вы также можете передать t аргументу sep. Обратите внимание, что есть другие функции, которые вы можете использовать для вывода ваших файлов. Вы можете найти их все здесь.

Пакеты для разбора файлов Excel и обратной записи с помощью Python

Помимо библиотеки Pandas, который вы будете использовать очень часто для загрузки своих данных, вы также можете использовать другие библиотеки для получения ваших данных в Python. Наш обзор основан на этой странице со списком доступных библиотек, которые вы можете использовать для работы с файлами Excel в Python.

Далее вы увидите, как использовать эти библиотеки с помощью некоторых реальных, но упрощенных примеров.

Использование виртуальных сред

Общий совет для установки — делать это в Python virtualenv без системных пакетов. Вы можете использовать virtualenv для создания изолированных сред Python: он создает папку, содержащую все необходимые исполняемые файлы для использования пакетов, которые потребуются проекту Python.

Чтобы начать работать с virtualenv, вам сначала нужно установить его. Затем перейдите в каталог, в который вы хотите поместить свой проект. Создайте virtualenv в этой папке и загрузите в определенную версию Python, если вам это нужно. Затем вы активируете виртуальную среду. После этого вы можете начать загрузку в другие библиотеки, начать работать с ними и т. д.

Совет: не забудьте деактивировать среду, когда закончите!

# Install virtualenv
$ pip install virtualenv

# Go to the folder of your project
$ cd my_folder

# Create a virtual environment `venv`
$ virtualenv venv

# Indicate the Python interpreter to use for `venv`
$ virtualenv -p /usr/bin/python2.7 venv

# Activate `venv`
$ source venv/bin/activate

# Deactivate `venv`
$ deactivate

Обратите внимание, что виртуальная среда может показаться немного проблемной на первый взгляд, когда вы только начинаете работать с данными с Python. И, особенно если у вас есть только один проект, вы можете не понять, зачем вам вообще нужна виртуальная среда.

С ней будет гораздо легче, когда у вас одновременно запущено несколько проектов, и вы не хотите, чтобы они использовали одну и ту же установку Python. Или когда ваши проекты имеют противоречащие друг другу требования, виртуальная среда пригодится!

Теперь вы можете, наконец, начать установку и импорт библиотек, о которых вы читали, и загрузить их в таблицу.

Как читать и записывать файлы Excel с openpyxl

Этот пакет обычно рекомендуется, если вы хотите читать и записывать файлы .xlsx, xlsm, xltx и xltm.

Установите openpyxl с помощью pip: вы видели, как это сделать в предыдущем разделе.

Общий совет для установки этой библиотеки — делать это в виртуальной среде Python без системных библиотек. Вы можете использовать виртуальную среду для создания изолированных сред Python: она создает папку, которая содержит все необходимые исполняемые файлы для использования библиотек, которые потребуются проекту Python.

Перейдите в каталог, в котором находится ваш проект, и повторно активируйте виртуальную среду venv. Затем продолжите установку openpyxl с pip, чтобы убедиться, что вы можете читать и записывать файлы с ним:

# Активируйте virtualenv
$ source activate venv

# Установим `openpyxl` в `venv`
$ pip install openpyxl

Теперь, когда вы установили openpyxl, вы можете загружать данные. Но что это за данные?

Доспутим Excel с данными, которые вы пытаетесь загрузить в Python, содержит следующие листы:

Функция load_workbook() принимает имя файла в качестве аргумента и возвращает объект рабочей книги, который представляет файл. Вы можете проверить это, запустив type (wb). Убедитесь, что вы находитесь в том каталоге, где находится ваша таблица, иначе вы получите error при импорте.

# Import `load_workbook` module from `openpyxl`
from openpyxl import load_workbook

# Load in the workbook
wb = load_workbook('./test.xlsx')

# Get sheet names
print(wb.get_sheet_names())

Помните, что вы можете изменить рабочий каталог с помощью os.chdir().

Вы видите, что фрагмент кода выше возвращает имена листов книги, загруженной в Python.Можете использовать эту информацию, чтобы также получить отдельные листы рабочей книги.

Вы также можете проверить, какой лист в настоящее время активен с wb.active. Как видно из кода ниже, вы можете использовать его для загрузки другого листа из вашей книги:

# Get a sheet by name 
sheet = wb.get_sheet_by_name('Sheet3')

# Print the sheet title 
sheet.title

# Get currently active sheet
anotherSheet = wb.active

# Check `anotherSheet` 
anotherSheet

На первый взгляд, с этими объектами рабочего листа вы не сможете многое сделать.. Однако вы можете извлечь значения из определенных ячеек на листе вашей книги, используя квадратные скобки [], в которые вы передаете точную ячейку, из которой вы хотите получить значение.

Обратите внимание, что это похоже на выбор, получение и индексирование массивов NumPy и Pandas DataFrames, но это не все, что вам нужно сделать, чтобы получить значение. Вам нужно добавить атрибут value:

# Retrieve the value of a certain cell
sheet['A1'].value

# Select element 'B2' of your sheet 
c = sheet['B2']

# Retrieve the row number of your element
c.row

# Retrieve the column letter of your element
c.column

# Retrieve the coordinates of the cell 
c.coordinate

Как вы можете видеть, помимо значения, есть и другие атрибуты, которые вы можете использовать для проверки вашей ячейки, а именно: row, column и coordinate.

Атрибут row вернет 2;

Добавление атрибута column к c даст вам ‘B’

coordinate вернет ‘B2’.

Вы также можете получить значения ячеек с помощью функции cell(). Передайте row и column, добавьте к этим аргументам значения, соответствующие значениям ячейки, которую вы хотите получить, и, конечно же, не забудьте добавить атрибут value:

# Retrieve cell value 
sheet.cell(row=1, column=2).value

# Print out values in column 2 
for i in range(1, 4):
     print(i, sheet.cell(row=i, column=2).value)

Обратите внимание, что если вы не укажете атрибут value, вы получите <Cell Sheet3.B1>, который ничего не говорит о значении, которое содержится в этой конкретной ячейке.

Вы видите, что вы используете цикл for с помощью функции range(), чтобы помочь вам распечатать значения строк, имеющих значения в столбце 2. Если эти конкретные ячейки пусты, вы просто вернете None. Если вы хотите узнать больше о циклах for, пройдите наш курс Intermediate Python для Data Science.

Есть специальные функции, которые вы можете вызывать для получения некоторых других значений, например, get_column_letter() и column_index_from_string.

Две функции указывают примерно то, что вы можете получить, используя их, но лучше сделать их четче: хотя вы можете извлечь букву столбца с предшествующего, вы можете сделать обратное или получить адрес столбца, когда вы задаёте букву последнему. Вы можете увидеть, как это работает ниже:

# Импорт необходимых модулей из  `openpyxl.utils`
from openpyxl.utils import get_column_letter, column_index_from_string

# Вывод 'A'
get_column_letter(1)

# Return '1'
column_index_from_string('A')

Вы уже получили значения для строк, которые имеют значения в определенном столбце, но что вам нужно сделать, если вы хотите распечатать строки вашего файла, не сосредотачиваясь только на одном столбце? Использовать другой цикл, конечно!

Например, вы говорите, что хотите сфокусироваться на области между «А1» и «С3», где первая указывает на левый верхний угол, а вторая — на правый нижний угол области, на которой вы хотите сфокусироваться. ,

Эта область будет так называемым cellObj, который вы видите в первой строке кода ниже. Затем вы говорите, что для каждой ячейки, которая находится в этой области, вы печатаете координату и значение, которое содержится в этой ячейке. После конца каждой строки вы печатаете сообщение, которое указывает, что строка этой области cellObj напечатана.

# Напечатать строчку за строчкой
for cellObj in sheet['A1':'C3']:
      for cell in cellObj:
              print(cells.coordinate, cells.value)
      print('--- END ---')

Еще раз обратите внимание, что выбор области очень похож на выбор, получение и индексирование списка и элементов массива NumPy, где вы также используете [] и : для указания области, значения которой вы хотите получить. Кроме того, вышеприведенный цикл также хорошо использует атрибуты ячейки!

Чтобы сделать вышеприведенное объяснение и код наглядным, вы можете проверить результат, который вы получите после завершения цикла:

('A1', u'M')
('B1', u'N')
('C1', u'O')
--- END ---
('A2', 10L)
('B2', 11L)
('C2', 12L)
--- END ---
('A3', 14L)
('B3', 15L)
('C3', 16L)
--- END ---

Наконец, есть некоторые атрибуты, которые вы можете использовать для проверки результата вашего импорта, а именно max_row и max_column. Эти атрибуты, конечно, и так  — общие способы проверки правильности загрузки данных, но они все равно полезны.

# Вывести максимальное количество строк 
sheet.max_row

# Вывести максимальное количество колонок 
sheet.max_column

Наверное, вы думаете, что такой способ работы с этими файлами сложноват, особенно если вы еще хотите манипулировать данными.

Должно быть что-то попроще, верно? Так и есть!

openpyxl поддерживает Pandas DataFrames! Вы можете использовать функцию DataFrame() из библиотеки Pandas, чтобы поместить значения листа в DataFrame:

# Import `pandas` 
import pandas as pd

# конвертировать Лист в DataFrame
df = pd.DataFrame(sheet.values)

Если вы хотите указать заголовки и индексы, вам нужно добавить немного больше кода:

# Put the sheet values in `data`
data = sheet.values

# Indicate the columns in the sheet values
cols = next(data)[1:]

# Convert your data to a list
data = list(data)

# Read in the data at index 0 for the indices
idx = [r[0] for r in data]

# Slice the data at index 1 
data = (islice(r, 1, None) for r in data)

# Make your DataFrame
df = pd.DataFrame(data, index=idx, columns=cols)

Затем вы можете начать манипулировать данными со всеми функциями, которые предлагает библиотека Pandas. Но помните, что вы находитесь в виртуальной среде, поэтому, если библиотека еще не представлена, вам нужно будет установить ее снова через pip.

Чтобы записать ваши Pandas DataFrames обратно в файл Excel, вы можете легко использовать функцию dataframe_to_rows() из модуля utils:

# Import `dataframe_to_rows`
from openpyxl.utils.dataframe import dataframe_to_rows

# Initialize a workbook 
wb = Workbook()

# Get the worksheet in the active workbook
ws = wb.active

# Append the rows of the DataFrame to your worksheet
for r in dataframe_to_rows(df, index=True, header=True):
    ws.append(r)

Но это точно не все! Библиотека openpyxl предлагает вам высокую гибкость при записи ваших данных обратно в файлы Excel, изменении стилей ячеек или использовании режима write-only. Эту библиотеку обязательно нужно знать, когда вы часто работаете с электронными таблицами ,

Совет: читайте больше о том, как вы можете изменить стили ячеек, перейти в режим write-only или как библиотека работает с NumPy здесь.

Теперь давайте также рассмотрим некоторые другие библиотеки, которые вы можете использовать для получения данных вашей электронной таблицы в Python.

Прежде чем закрыть этот раздел, не забудьте отключить виртуальную среду, когда закончите!

Чтение и форматирование Excel-файлов: xlrd

Эта библиотека идеально подходит для чтения и форматирования данных из Excel с расширением xls или xlsx.

# Import `xlrd`
import xlrd

# Open a workbook 
workbook = xlrd.open_workbook('example.xls')

# Loads only current sheets to memory
workbook = xlrd.open_workbook('example.xls', on_demand = True)

Когда вам не нужны данные из всей Excel-книги, вы можете использовать функции sheet_by_name() или sheet_by_index() для получения листов, которые вы хотите получить в своём анализе

# Load a specific sheet by name
worksheet = workbook.sheet_by_name('Sheet1')

# Load a specific sheet by index 
worksheet = workbook.sheet_by_index(0)

# Retrieve the value from cell at indices (0,0) 
sheet.cell(0, 0).value

Также можно получить значение в определённых ячейках с вашего листа.

Перейдите к xlwt и xlutils, чтобы узнать больше о том, как они относятся к библиотеке xlrd.

Запись данных в Excel-файлы с xlwt

Если вы хотите создать таблицу со своими данными, вы можете использовать не только библиотеку XlsWriter, но и xlwt. xlwt идеально подходит для записи данных и форматирования информации в файлах с расширением .xls

Когда вы вручную создаёте файл:

# Import `xlwt` 
import xlwt

# Initialize a workbook 
book = xlwt.Workbook(encoding="utf-8")

# Add a sheet to the workbook 
sheet1 = book.add_sheet("Python Sheet 1") 

# Write to the sheet of the workbook 
sheet1.write(0, 0, "This is the First Cell of the First Sheet") 

# Save the workbook 
book.save("spreadsheet.xls")

Если вы хотите записать данные в файл, но не хотите делать все самостоятельно, вы всегда можете прибегнуть к циклу for, чтобы автоматизировать весь процесс. Составьте сценарий, в котором вы создаёте книгу и в которую добавляете лист. Укажите список со столбцами и один со значениями, которые будут заполнены на листе.

Далее у вас есть цикл for, который гарантирует, что все значения попадают в файл: вы говорите, что для каждого элемента в диапазоне от 0 до 4 (5 не включительно) вы собираетесь что-то делать. Вы будете заполнять значения построчно. Для этого вы указываете элемент строки, который появляется в каждом цикле. Далее у вас есть еще один цикл for, который будет проходить по столбцам вашего листа. Вы говорите, что для каждой строки на листе, вы будете смотреть на столбцы, которые идут с ним, и вы будете заполнять значение для каждого столбца в строке. Заполнив все столбцы строки значениями, вы перейдете к следующей строке, пока не останется строк.

# Initialize a workbook
book = xlwt.Workbook()

# Add a sheet to the workbook
sheet1 = book.add_sheet("Sheet1")

# The data
cols = ["A", "B", "C", "D", "E"]
txt = [0,1,2,3,4]

# Loop over the rows and columns and fill in the values
for num in range(5):
      row = sheet1.row(num)
      for index, col in enumerate(cols):
          value = txt[index] + num
          row.write(index, value)

# Save the result
book.save("test.xls")

На скриншоте ниже представлен результат выполнения этого кода:

Теперь, когда вы увидели, как xlrd и xlwt работают друг с другом, пришло время взглянуть на библиотеку, которая тесно связана с этими двумя: xlutils.

Сборник утилит: xlutils

Эта библиотека — сборник утилит, для которого требуются и xlrd и xlwt, и которая может копировать, изменять и фильтровать существующие данные. О том, как пользоваться этими командами рассказано в разделе по openpyxl.

Вернитесь в раздел openpyxl, чтобы получить больше информации о том, как использовать этот пакет для получения данных в Python.

Использование pyexcel для чтения .xls или .xlsx файлов

Еще одна библиотека, которую можно использовать для чтения данных электронных таблиц в Python — это pyexcel; Python Wrapper, который предоставляет один API для чтения, записи и работы с данными в файлах .csv, .ods, .xls, .xlsx и .xlsm. Конечно, для этого урока вы просто сосредоточитесь на файлах .xls и .xls.

Чтобы получить ваши данные в массиве, вы можете использовать функцию get_array(), которая содержится в пакете pyexcel:

# Import `pyexcel`
import pyexcel

# Get an array from the data
my_array = pyexcel.get_array(file_name="test.xls")

Вы также можете получить свои данные в упорядоченном словаре списков. Вы можете использовать функцию get_dict():

# Import `OrderedDict` module 
from pyexcel._compact import OrderedDict

# Get your data in an ordered dictionary of lists
my_dict = pyexcel.get_dict(file_name="test.xls", name_columns_by_row=0)

# Get your data in a dictionary of 2D arrays
book_dict = pyexcel.get_book_dict(file_name="test.xls")

Здесь видно, что если вы хотите получить словарь двумерных массивов или получить все листы рабочей книги в одном словаре, вы можете прибегнуть к get_book_dict().

Помните, что эти две структуры данных, которые были упомянуты выше, массивы и словари вашей таблицы, позволяют вам создавать DataFrames ваших данных с помощью pd.DataFrame(). Это облегчит обработку данных.

Кроме того, вы можете просто получить записи из таблицы с помощью pyexcel благодаря функции get_records(). Просто передайте аргумент file_name в функцию, и вы получите список словарей:

# Retrieve the records of the file
records = pyexcel.get_records(file_name="test.xls")

Чтобы узнать, как управлять списками Python, ознакомьтесь с примерами из документации о списках Python.

Запись в файл с pyexcel

С помощью этой библиотеки можно не только загружать данные в массивы, вы также можете экспортировать свои массивы обратно в таблицу. Используйте функцию save_as() и передайте массив и имя файла назначения в аргумент dest_file_name:

# Get the data
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

# Save the array to a file
pyexcel.save_as(array=data, dest_file_name="array_data.xls")

Обратите внимание, что если вы хотите указать разделитель, вы можете добавить аргумент dest_delimiter и передать символ, который вы хотите использовать в качестве разделителя между «».

Однако если у вас есть словарь, вам нужно использовать функцию save_book_as(). Передайте двумерный словарь в bookdict и укажите имя файла:

# The data
2d_array_dictionary = {'Sheet 1': [
                                   ['ID', 'AGE', 'SCORE']
                                   [1, 22, 5],
                                   [2, 15, 6],
                                   [3, 28, 9]
                                  ],
                       'Sheet 2': [
                                    ['X', 'Y', 'Z'],
                                    [1, 2, 3],
                                    [4, 5, 6]
                                    [7, 8, 9]
                                  ],
                       'Sheet 3': [
                                    ['M', 'N', 'O', 'P'],
                                    [10, 11, 12, 13],
                                    [14, 15, 16, 17]
                                    [18, 19, 20, 21]
                                   ]}

# Save the data to a file                        
pyexcel.save_book_as(bookdict=2d_array_dictionary, dest_file_name="2d_array_data.xls")

При использовании кода, напечатанного в приведенном выше примере, важно помнить, что порядок ваших данных в словаре не будет сохранен. Если вы не хотите этого, вам нужно сделать небольшой обход. Вы можете прочитать все об этом здесь.

Чтение и запись .csv файлов

Если вы все еще ищете библиотеки, которые позволяют загружать и записывать данные в файлы .csv, кроме Pandas, лучше всего использовать пакет csv:

# import `csv`
import csv

# Read in csv file 
for row in csv.reader(open('data.csv'), delimiter=','):
      print(row)
      
# Write csv file
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
outfile = open('data.csv', 'w')
writer = csv.writer(outfile, delimiter=';', quotechar='"')
writer.writerows(data)
outfile.close()

Обратите внимание, что в пакете NumPy есть функция genfromtxt(), которая позволяет загружать данные, содержащиеся в файлах .csv, в массивы, которые затем можно поместить в DataFrames.

Финальная проверка данных

Когда у вас есть данные, не забудьте последний шаг: проверить, правильно ли загружены данные. Если вы поместили свои данные в DataFrame, вы можете легко и быстро проверить, был ли импорт успешным, выполнив следующие команды:

# Check the first entries of the DataFrame
df1.head()

# Check the last entries of the DataFrame
df1.tail()

Если у вас есть данные в массиве, вы можете проверить их, используя следующие атрибуты массива: shape, ndim, dtype и т.д .:

# Inspect the shape 
data.shape

# Inspect the number of dimensions
data.ndim

# Inspect the data type
data.dtype

Что дальше?

Поздравляем! Вы успешно прошли наш урок и научились читать файлы Excel на Python.

Если вы хотите продолжить работу над этой темой, попробуйте воспользоваться PyXll, который позволяет писать функции в Python и вызывать их в Excel.

Why learn to work with Excel with Python? Excel is one of the most popular and widely-used data tools; it’s hard to find an organization that doesn’t work with it in some way. From analysts, to sales VPs, to CEOs, various professionals use Excel for both quick stats and serious data crunching.

With Excel being so pervasive, data professionals must be familiar with it. Working with data in Python or R offers serious advantages over Excel’s UI, so finding a way to work with Excel using code is critical. Thankfully, there’s a great tool already out there for using Excel with Python called pandas.

Pandas has excellent methods for reading all kinds of data from Excel files. You can also export your results from pandas back to Excel, if that’s preferred by your intended audience. Pandas is great for other routine data analysis tasks, such as:

  • quick Exploratory Data Analysis (EDA)
  • drawing attractive plots
  • feeding data into machine learning tools like scikit-learn
  • building machine learning models on your data
  • taking cleaned and processed data to any number of data tools

Pandas is better at automating data processing tasks than Excel, including processing Excel files.

In this tutorial, we are going to show you how to work with Excel files in pandas. We will cover the following concepts.

  • setting up your computer with the necessary software
  • reading in data from Excel files into pandas
  • data exploration in pandas
  • visualizing data in pandas using the matplotlib visualization library
  • manipulating and reshaping data in pandas
  • moving data from pandas into Excel

Note that this tutorial does not provide a deep dive into pandas. To explore pandas more, check out our course.

System Prerequisites

We will use Python 3 and Jupyter Notebook to demonstrate the code in this tutorial.In addition to Python and Jupyter Notebook, you will need the following Python modules:

  • matplotlib — data visualization
  • NumPy — numerical data functionality
  • OpenPyXL — read/write Excel 2010 xlsx/xlsm files
  • pandas — data import, clean-up, exploration, and analysis
  • xlrd — read Excel data
  • xlwt — write to Excel
  • XlsxWriter — write to Excel (xlsx) files

There are multiple ways to get set up with all the modules. We cover three of the most common scenarios below.

  • If you have Python installed via Anaconda package manager, you can install the required modules using the command conda install. For example, to install pandas, you would execute the command — conda install pandas.
  • If you already have a regular, non-Anaconda Python installed on the computer, you can install the required modules using pip. Open your command line program and execute command pip install <module name> to install a module. You should replace <module name> with the actual name of the module you are trying to install. For example, to install pandas, you would execute command — pip install pandas.
  • If you don’t have Python already installed, you should get it through the Anaconda package manager. Anaconda provides installers for Windows, Mac, and Linux Computers. If you choose the full installer, you will get all the modules you need, along with Python and pandas within a single package. This is the easiest and fastest way to get started.

The Data Set

In this tutorial, we will use a multi-sheet Excel file we created from Kaggle’s IMDB Scores data. You can download the file here.

img-excel-1

Our Excel file has three sheets: ‘1900s,’ ‘2000s,’ and ‘2010s.’ Each sheet has data for movies from those years.

We will use this data set to find the ratings distribution for the movies, visualize movies with highest ratings and net earnings and calculate statistical information about the movies. We will be analyzing and exploring this data using Python and pandas, thus demonstrating pandas capabilities for working with Excel data in Python.

Read data from the Excel file

We need to first import the data from the Excel file into pandas. To do that, we start by importing the pandas module.

import pandas as pd

We then use the pandas’ read_excel method to read in data from the Excel file. The easiest way to call this method is to pass the file name. If no sheet name is specified then it will read the first sheet in the index (as shown below).

excel_file = 'movies.xls'
movies = pd.read_excel(excel_file)

Here, the read_excel method read the data from the Excel file into a pandas DataFrame object. Pandas defaults to storing data in DataFrames. We then stored this DataFrame into a variable called movies.

Pandas has a built-in DataFrame.head() method that we can use to easily display the first few rows of our DataFrame. If no argument is passed, it will display first five rows. If a number is passed, it will display the equal number of rows from the top.

movies.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
0 Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123 1.33 385907.0 NaN 436 22 9.0 481 691 1 10718 88 69.0 8.0
1 Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110 1.33 100000.0 3000000.0 2 2 0.0 4 0 1 5 1 1.0 4.8
2 The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151 1.33 245000.0 NaN 81 12 6.0 108 226 0 4849 45 48.0 8.3
3 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
4 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0

5 rows × 25 columns

Excel files quite often have multiple sheets and the ability to read a specific sheet or all of them is very important. To make this easy, the pandas read_excel method takes an argument called sheetname that tells pandas which sheet to read in the data from. For this, you can either use the sheet name or the sheet number. Sheet numbers start with zero. If the sheetname argument is not given, it defaults to zero and pandas will import the first sheet.

By default, pandas will automatically assign a numeric index or row label starting with zero. You may want to leave the default index as such if your data doesn’t have a column with unique values that can serve as a better index. In case there is a column that you feel would serve as a better index, you can override the default behavior by setting index_col property to a column. It takes a numeric value for setting a single column as index or a list of numeric values for creating a multi-index.

In the below code, we are choosing the first column, ‘Title’, as index (index=0) by passing zero to the index_col argument.

movies_sheet1 = pd.read_excel(excel_file, sheetname=0, index_col=0)
movies_sheet1.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123 1.33 385907.0 NaN D.W. Griffith 436 22 9.0 481 691 1 10718 88 69.0 8.0
Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110 1.33 100000.0 3000000.0 Harry F. Millarde 2 2 0.0 4 0 1 5 1 1.0 4.8
The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151 1.33 245000.0 NaN King Vidor 81 12 6.0 108 226 0 4849 45 48.0 8.3
Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 Fritz Lang 136 23 18.0 203 12000 1 111841 413 260.0 8.3
Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 Georg Wilhelm Pabst 426 20 3.0 455 926 1 7431 84 71.0 8.0

5 rows × 24 columns

As you noticed above, our Excel data file has three sheets. We already read the first sheet in a DataFrame above. Now, using the same syntax, we will read in rest of the two sheets too.

movies_sheet2 = pd.read_excel(excel_file, sheetname=1, index_col=0)
movies_sheet2.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
102 Dalmatians 2000 Adventure|Comedy|Family English USA G 100.0 1.85 85000000.0 66941559.0 Kevin Lima 2000.0 795.0 439.0 4182 372 1 26413 77.0 84.0 4.8
28 Days 2000 Comedy|Drama English USA PG-13 103.0 1.37 43000000.0 37035515.0 Betty Thomas 12000.0 10000.0 664.0 23864 0 1 34597 194.0 116.0 6.0
3 Strikes 2000 Comedy English USA R 82.0 1.85 6000000.0 9821335.0 DJ Pooh 939.0 706.0 585.0 3354 118 1 1415 10.0 22.0 4.0
Aberdeen 2000 Drama English UK NaN 106.0 1.85 6500000.0 64148.0 Hans Petter Moland 844.0 2.0 0.0 846 260 0 2601 35.0 28.0 7.3
All the Pretty Horses 2000 Drama|Romance|Western English USA PG-13 220.0 2.35 57000000.0 15527125.0 Billy Bob Thornton 13000.0 861.0 820.0 15006 652 2 11388 183.0 85.0 5.8

5 rows × 24 columns

movies_sheet3 = pd.read_excel(excel_file, sheetname=2, index_col=0)
movies_sheet3.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
127 Hours 2010.0 Adventure|Biography|Drama|Thriller English USA R 94.0 1.85 18000000.0 18329466.0 Danny Boyle 11000.0 642.0 223.0 11984 63000 0.0 279179 440.0 450.0 7.6
3 Backyards 2010.0 Drama English USA R 88.0 NaN 300000.0 NaN Eric Mendelsohn 795.0 659.0 301.0 1884 92 0.0 554 23.0 20.0 5.2
3 2010.0 Comedy|Drama|Romance German Germany Unrated 119.0 2.35 NaN 59774.0 Tom Tykwer 24.0 20.0 9.0 69 2000 0.0 4212 18.0 76.0 6.8
8: The Mormon Proposition 2010.0 Documentary English USA R 80.0 1.78 2500000.0 99851.0 Reed Cowan 191.0 12.0 5.0 210 0 0.0 1138 30.0 28.0 7.1
A Turtle’s Tale: Sammy’s Adventures 2010.0 Adventure|Animation|Family English France PG 88.0 2.35 NaN NaN Ben Stassen 783.0 749.0 602.0 3874 0 2.0 5385 22.0 56.0 6.1

5 rows × 24 columns

Since all the three sheets have similar data but for different recordsmovies, we will create a single DataFrame from all the three DataFrames we created above. We will use the pandas concat method for this and pass in the names of the three DataFrames we just created and assign the results to a new DataFrame object, movies. By keeping the DataFrame name same as before, we are over-writing the previously created DataFrame.

movies = pd.concat([movies_sheet1, movies_sheet2, movies_sheet3])

We can check if this concatenation by checking the number of rows in the combined DataFrame by calling the method shape on it that will give us the number of rows and columns.

movies.shape
(5042, 24)

Using the ExcelFile class to read multiple sheets

We can also use the ExcelFile class to work with multiple sheets from the same Excel file. We first wrap the Excel file using ExcelFile and then pass it to read_excel method.

xlsx = pd.ExcelFile(excel_file)
movies_sheets = []
for sheet in xlsx.sheet_names:
   movies_sheets.append(xlsx.parse(sheet))
movies = pd.concat(movies_sheets)

If you are reading an Excel file with a lot of sheets and are creating a lot of DataFrames, ExcelFile is more convenient and efficient in comparison to read_excel. With ExcelFile, you only need to pass the Excel file once, and then you can use it to get the DataFrames. When using read_excel, you pass the Excel file every time and hence the file is loaded again for every sheet. This can be a huge performance drag if the Excel file has many sheets with a large number of rows.

Exploring the data

Now that we have read in the movies data set from our Excel file, we can start exploring it using pandas. A pandas DataFrame stores the data in a tabular format, just like the way Excel displays the data in a sheet. Pandas has a lot of built-in methods to explore the DataFrame we created from the Excel file we just read in.

We already introduced the method head in the previous section that displays few rows from the top from the DataFrame. Let’s look at few more methods that come in handy while exploring the data set.

We can use the shape method to find out the number of rows and columns for the DataFrame.

movies.shape
(5042, 25)

This tells us our Excel file has 5042 records and 25 columns or observations. This can be useful in reporting the number of records and columns and comparing that with the source data set.

We can use the tail method to view the bottom rows. If no parameter is passed, only the bottom five rows are returned.

movies.tail()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
1599 War & Peace NaN Drama|History|Romance|War English UK TV-14 NaN 16.00 NaN NaN 1000.0 888.0 502.0 4528 11000 1.0 9277 44.0 10.0 8.2
1600 Wings NaN Comedy|Drama English USA NaN 30.0 1.33 NaN NaN 685.0 511.0 424.0 1884 1000 5.0 7646 56.0 19.0 7.3
1601 Wolf Creek NaN Drama|Horror|Thriller English Australia NaN NaN 2.00 NaN NaN 511.0 457.0 206.0 1617 954 0.0 726 6.0 2.0 7.1
1602 Wuthering Heights NaN Drama|Romance English UK NaN 142.0 NaN NaN NaN 27000.0 698.0 427.0 29196 0 2.0 6053 33.0 9.0 7.7
1603 Yu-Gi-Oh! Duel Monsters NaN Action|Adventure|Animation|Family|Fantasy Japanese Japan NaN 24.0 NaN NaN NaN 0.0 NaN NaN 0 124 0.0 12417 51.0 6.0 7.0

5 rows × 25 columns

In Excel, you’re able to sort a sheet based on the values in one or more columns. In pandas, you can do the same thing with the sort_values method. For example, let’s sort our movies DataFrame based on the Gross Earnings column.

sorted_by_gross = movies.sort_values(['Gross Earnings'], ascending=False)

Since we have the data sorted by values in a column, we can do few interesting things with it. For example, we can display the top 10 movies by Gross Earnings.

sorted_by_gross["Gross Earnings"].head(10)
1867 760505847.0
1027 658672302.0
1263 652177271.0
610 623279547.0
611 623279547.0
1774 533316061.0
1281 474544677.0
226 460935665.0
1183 458991599.0
618 448130642.0
Name: Gross Earnings, dtype: float64

We can also create a plot for the top 10 movies by Gross Earnings. Pandas makes it easy to visualize your data with plots and charts through matplotlib, a popular data visualization library. With a couple lines of code, you can start plotting. Moreover, matplotlib plots work well inside Jupyter Notebooks since you can displace the plots right under the code.

First, we import the matplotlib module and set matplotlib to display the plots right in the Jupyter Notebook.

import matplotlib.pyplot as plt%matplotlib inline

We will draw a bar plot where each bar will represent one of the top 10 movies. We can do this by calling the plot method and setting the argument kind to barh. This tells matplotlib to draw a horizontal bar plot.

sorted_by_gross['Gross Earnings'].head(10).plot(kind="barh")
plt.show()

python-pandas-and-excel_28_0

Let’s create a histogram of IMDB Scores to check the distribution of IMDB Scores across all movies. Histograms are a good way to visualize the distribution of a data set. We use the plot method on the IMDB Scores series from our movies DataFrame and pass it the argument.

movies['IMDB Score'].plot(kind="hist")
plt.show()

python-pandas-and-excel_30_0

This data visualization suggests that most of the IMDB Scores fall between six and eight.

Getting statistical information about the data

Pandas has some very handy methods to look at the statistical data about our data set. For example, we can use the describe method to get a statistical summary of the data set.

movies.describe()
Year Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
count 4935.000000 5028.000000 4714.000000 4.551000e+03 4.159000e+03 4938.000000 5035.000000 5029.000000 5020.000000 5042.000000 5042.000000 5029.000000 5.042000e+03 5022.000000 4993.000000 5042.000000
mean 2002.470517 107.201074 2.220403 3.975262e+07 4.846841e+07 686.621709 6561.323932 1652.080533 645.009761 9700.959143 7527.457160 1.371446 8.368475e+04 272.770808 140.194272 6.442007
std 12.474599 25.197441 1.385113 2.061149e+08 6.845299e+07 2813.602405 15021.977635 4042.774685 1665.041728 18165.101925 19322.070537 2.013683 1.384940e+05 377.982886 121.601675 1.125189
min 1916.000000 7.000000 1.180000 2.180000e+02 1.620000e+02 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.000000e+00 1.000000 1.000000 1.600000
25% 1999.000000 93.000000 1.850000 6.000000e+06 5.340988e+06 7.000000 614.500000 281.000000 133.000000 1411.250000 0.000000 0.000000 8.599250e+03 65.000000 50.000000 5.800000
50% 2005.000000 103.000000 2.350000 2.000000e+07 2.551750e+07 49.000000 988.000000 595.000000 371.500000 3091.000000 166.000000 1.000000 3.437100e+04 156.000000 110.000000 6.600000
75% 2011.000000 118.000000 2.350000 4.500000e+07 6.230944e+07 194.750000 11000.000000 918.000000 636.000000 13758.750000 3000.000000 2.000000 9.634700e+04 326.000000 195.000000 7.200000
max 2016.000000 511.000000 16.000000 1.221550e+10 7.605058e+08 23000.000000 640000.000000 137000.000000 23000.000000 656730.000000 349000.000000 43.000000 1.689764e+06 5060.000000 813.000000 9.500000

The describe method displays below information for each of the columns.

  • the count or number of values
  • mean
  • standard deviation
  • minimum, maximum
  • 25%, 50%, and 75% quantile

Please note that this information will be calculated only for the numeric values.

We can also use the corresponding method to access this information one at a time. For example, to get the mean of a particular column, you can use the mean method on that column.

movies["Gross Earnings"].mean()
48468407.526809327

Just like mean, there are methods available for each of the statistical information we want to access. You can read about these methods in our free pandas cheat sheet.

Reading files with no header and skipping records

Earlier in this tutorial, we saw some ways to read a particular kind of Excel file that had headers and no rows that needed skipping. Sometimes, the Excel sheet doesn’t have any header row. For such instances, you can tell pandas not to consider the first row as header or columns names. And If the Excel sheet’s first few rows contain data that should not be read in, you can ask the read_excel method to skip a certain number of rows, starting from the top.

For example, look at the top few rows of this Excel file.img-excel-no-header-1

This file obviously has no header and first four rows are not actual records and hence should not be read in. We can tell read_excel there is no header by setting argument header to None and we can skip first four rows by setting argument skiprows to four.

movies_skip_rows = pd.read_excel("movies-no-header-skip-rows.xls", header=None, skiprows=4)
movies_skip_rows.head(5)
0 1 2 3 4 5 6 7 8 9 15 16 17 18 19 20 21 22 23 24
0 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
1 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0
2 The Broadway Melody 1929 Musical|Romance English USA Passed 100 1.37 379000.0 2808000.0 77 28 4.0 109 167 8 4546 71 36.0 6.3
3 Hell’s Angels 1930 Drama|War English USA Passed 96 1.20 3950000.0 NaN 431 12 4.0 457 279 1 3753 53 35.0 7.8
4 A Farewell to Arms 1932 Drama|Romance|War English USA Unrated 79 1.37 800000.0 NaN 998 164 99.0 1284 213 1 3519 46 42.0 6.6

5 rows × 25 columns

We skipped four rows from the sheet and used none of the rows as the header. Also, notice that one can combine different options in a single read statement. To skip rows at the bottom of the sheet, you can use option skip_footer, which works just like skiprows, the only difference being the rows are counted from the bottom upwards.

The column names in the previous DataFrame are numeric and were allotted as default by the pandas. We can rename the column names to descriptive ones by calling the method columns on the DataFrame and passing the column names as a list.

movies_skip_rows.columns = ['Title', 'Year', 'Genres', 'Language', 'Country', 'Content Rating', 'Duration', 'Aspect Ratio', 'Budget', 'Gross Earnings', 'Director', 'Actor 1', 'Actor 2', 'Actor 3', 'Facebook Likes - Director', 'Facebook Likes - Actor 1', 'Facebook Likes - Actor 2', 'Facebook Likes - Actor 3', 'Facebook Likes - cast Total', 'Facebook likes - Movie', 'Facenumber in posters', 'User Votes', 'Reviews by Users', 'Reviews by Crtiics', 'IMDB Score']
movies_skip_rows.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
0 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
1 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0
2 The Broadway Melody 1929 Musical|Romance English USA Passed 100 1.37 379000.0 2808000.0 77 28 4.0 109 167 8 4546 71 36.0 6.3
3 Hell’s Angels 1930 Drama|War English USA Passed 96 1.20 3950000.0 NaN 431 12 4.0 457 279 1 3753 53 35.0 7.8
4 A Farewell to Arms 1932 Drama|Romance|War English USA Unrated 79 1.37 800000.0 NaN 998 164 99.0 1284 213 1 3519 46 42.0 6.6

5 rows × 25 columns

Now that we have seen how to read a subset of rows from the Excel file, we can learn how to read a subset of columns.

Reading a subset of columns

Although read_excel defaults to reading and importing all columns, you can choose to import only certain columns. By passing parse_cols=6, we are telling the read_excel method to read only the first columns till index six or first seven columns (the first column being indexed zero).

movies_subset_columns = pd.read_excel(excel_file, parse_cols=6)
movies_subset_columns.head()
Title Year Genres Language Country Content Rating Duration
0 Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123
1 Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110
2 The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151
3 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145
4 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110

Alternatively, you can pass in a list of numbers, which will let you import columns at particular indexes.

Applying formulas on the columns

One of the much-used features of Excel is to apply formulas to create new columns from existing column values. In our Excel file, we have Gross Earnings and Budget columns. We can get Net earnings by subtracting Budget from Gross earnings. We could then apply this formula in the Excel file to all the rows. We can do this in pandas also as shown below.

movies["Net Earnings"] = movies["Gross Earnings"] - movies["Budget"]

Above, we used pandas to create a new column called Net Earnings, and populated it with the difference of Gross Earnings and Budget. It’s worth noting the difference here in how formulas are treated in Excel versus pandas. In Excel, a formula lives in the cell and updates when the data changes — with Python, the calculations happen and the values are stored — if Gross Earnings for one movie was manually changed, Net Earnings won’t be updated.

Let’s use the sort_values method to sort the data by the new column we created and visualize the top 10 movies by Net Earnings.

sorted_movies = movies[['Net Earnings']].sort_values(['Net Earnings'], ascending=[False])sorted_movies.head(10)['Net Earnings'].plot.barh()
plt.show()

python-pandas-and-excel_44_0

Pivot Table in pandas

Advanced Excel users also often use pivot tables. A pivot table summarizes the data of another table by grouping the data on an index and applying operations such as sorting, summing, or averaging. You can use this feature in pandas too.

We need to first identify the column or columns that will serve as the index, and the column(s) on which the summarizing formula will be applied. Let’s start small, by choosing Year as the index column and Gross Earnings as the summarization column and creating a separate DataFrame from this data.

movies_subset = movies[['Year', 'Gross Earnings']]
movies_subset.head()
Year Gross Earnings
0 1916.0 NaN
1 1920.0 3000000.0
2 1925.0 NaN
3 1927.0 26435.0
4 1929.0 9950.0

We now call pivot_table on this subset of data. The method pivot_table takes a parameter index. As mentioned, we want to use Year as the index.

earnings_by_year = movies_subset.pivot_table(index=['Year'])
earnings_by_year.head()
Gross Earnings
Year
1916.0 NaN
1920.0 3000000.0
1925.0 NaN
1927.0 26435.0
1929.0 1408975.0

This gave us a pivot table with grouping on Year and summarization on the sum of Gross Earnings. Notice, we didn’t need to specify Gross Earnings column explicitly as pandas automatically identified it the values on which summarization should be applied.

We can use this pivot table to create some data visualizations. We can call the plot method on the DataFrame to create a line plot and call the show method to display the plot in the notebook.

earnings_by_year.plot()
plt.show()

python-pandas-and-excel_50_0

We saw how to pivot with a single column as the index. Things will get more interesting if we can use multiple columns. Let’s create another DataFrame subset but this time we will choose the columns, Country, Language and Gross Earnings.

movies_subset = movies[['Country', 'Language', 'Gross Earnings']]
movies_subset.head()
Country Language Gross Earnings
0 USA NaN NaN
1 USA NaN 3000000.0
2 USA NaN NaN
3 Germany German 26435.0
4 Germany German 9950.0

We will use columns Country and Language as the index for the pivot table. We will use Gross Earnings as summarization table, however, we do not need to specify this explicitly as we saw earlier.

earnings_by_co_lang = movies_subset.pivot_table(index=['Country', 'Language'])
earnings_by_co_lang.head()
Gross Earnings
Country Language
Afghanistan Dari 1.127331e+06
Argentina Spanish 7.230936e+06
Aruba English 1.007614e+07
Australia Aboriginal 6.165429e+06
Dzongkha 5.052950e+05

Let’s visualize this pivot table with a bar plot. Since there are still few hundred records in this pivot table, we will plot just a few of them.

earnings_by_co_lang.head(20).plot(kind='bar', figsize=(20,8))
plt.show()

python-pandas-and-excel_56_0

Exporting the results to Excel

If you’re going to be working with colleagues who use Excel, saving Excel files out of pandas is important. You can export or write a pandas DataFrame to an Excel file using pandas to_excel method. Pandas uses the xlwt Python module internally for writing to Excel files. The to_excel method is called on the DataFrame we want to export.We also need to pass a filename to which this DataFrame will be written.

movies.to_excel('output.xlsx')

By default, the index is also saved to the output file. However, sometimes the index doesn’t provide any useful information. For example, the movies DataFrame has a numeric auto-increment index, that was not part of the original Excel data.

movies.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score Net Earnings
0 Intolerance: Love’s Struggle Throughout the Ages 1916.0 Drama|History|War NaN USA Not Rated 123.0 1.33 385907.0 NaN 22.0 9.0 481 691 1.0 10718 88.0 69.0 8.0 NaN
1 Over the Hill to the Poorhouse 1920.0 Crime|Drama NaN USA NaN 110.0 1.33 100000.0 3000000.0 2.0 0.0 4 0 1.0 5 1.0 1.0 4.8 2900000.0
2 The Big Parade 1925.0 Drama|Romance|War NaN USA Not Rated 151.0 1.33 245000.0 NaN 12.0 6.0 108 226 0.0 4849 45.0 48.0 8.3 NaN
3 Metropolis 1927.0 Drama|Sci-Fi German Germany Not Rated 145.0 1.33 6000000.0 26435.0 23.0 18.0 203 12000 1.0 111841 413.0 260.0 8.3 -5973565.0
4 Pandora’s Box 1929.0 Crime|Drama|Romance German Germany Not Rated 110.0 1.33 NaN 9950.0 20.0 3.0 455 926 1.0 7431 84.0 71.0 8.0 NaN

5 rows × 26 columns

You can choose to skip the index by passing along index-False.

movies.to_excel('output.xlsx', index=False)

We need to be able to make our output files look nice before we can send it out to our co-workers. We can use pandas ExcelWriter class along with the XlsxWriter Python module to apply the formatting.

We can do use these advanced output options by creating a ExcelWriter object and use this object to write to the EXcel file.

writer = pd.ExcelWriter('output.xlsx', engine='xlsxwriter')
movies.to_excel(writer, index=False, sheet_name='report')
workbook = writer.bookworksheet = writer.sheets['report']

We can apply customizations by calling add_format on the workbook we are writing to. Here we are setting header format as bold.

header_fmt = workbook.add_format({'bold': True})
worksheet.set_row(0, None, header_fmt)

Finally, we save the output file by calling the method save on the writer object.

writer.save()

As an example, we saved the data with column headers set as bold. And the saved file looks like the image below.

img-excel-output-bold-1

Like this, one can use XlsxWriter to apply various formatting to the output Excel file.

Conclusion

Pandas is not a replacement for Excel. Both tools have their place in the data analysis workflow and can be very great companion tools. As we demonstrated, pandas can do a lot of complex data analysis and manipulations, which depending on your need and expertise, can go beyond what you can achieve if you are just using Excel. One of the major benefits of using Python and pandas over Excel is that it helps you automate Excel file processing by writing scripts and integrating with your automated data workflow. Pandas also has excellent methods for reading all kinds of data from Excel files. You can export your results from pandas back to Excel too if that’s preferred by your intended audience.

On the other hand, Excel is a such a widely used data tool, it’s not a wise to ignore it. Acquiring expertise in both pandas and Excel and making them work together gives you skills that can help you stand out in your organization.

If you’d like to learn more about this topic, check out Dataquest’s interactive Pandas and NumPy Fundamentals course, and our Data Analyst in Python, and Data Scientist in Python paths that will help you become job-ready in around 6 months.

Like this post? Please share to your friends:
  • Библиотека microsoft office interop word
  • Библиотека excel для visual studio
  • Библиотека com объекта excel
  • Библиография по гост word
  • Бесплатный аналог word для айпада