Анализ регрессии в excel как включить

Содержание

  • Подключение пакета анализа
  • Виды регрессионного анализа
  • Линейная регрессия в программе Excel
  • Разбор результатов анализа
  • Вопросы и ответы

Регрессивный анализ в Microsoft Excel

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

  1. Перемещаемся во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Переходим в раздел «Параметры».
  4. Переход в параметры в программе Microsoft Excel

  5. Открывается окно параметров Excel. Переходим в подраздел «Надстройки».
  6. Переход в надстройки в программе Microsoft Excel

  7. В самой нижней части открывшегося окна переставляем переключатель в блоке «Управление» в позицию «Надстройки Excel», если он находится в другом положении. Жмем на кнопку «Перейти».
  8. Перемещение в надстройки в программе Microsoft Excel

  9. Открывается окно доступных надстроек Эксель. Ставим галочку около пункта «Пакет анализа». Жмем на кнопку «OK».

Активация пакета анализа в программе Microsoft Excel

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Блок настроек Анализ в программе Microsoft Excel

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк. В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

  1. Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».
  2. Переход в анализ данных в программе Microsoft Excel

    Lumpics.ru

  3. Открывается небольшое окошко. В нём выбираем пункт «Регрессия». Жмем на кнопку «OK».
  4. Запуск регрессии в программе Microsoft Excel

  5. Открывается окно настроек регрессии. В нём обязательными для заполнения полями являются «Входной интервал Y» и «Входной интервал X». Все остальные настройки можно оставить по умолчанию.

    В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

    В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

    Ввод интервала в настройках регрессии в программе Microsoft Excel

    С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

    Параметры вывода в настройках регрессии в программе Microsoft Excel

    После того, как все настройки установлены, жмем на кнопку «OK».

Запуск регрессивного анализа в программе Microsoft Excel

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Результат анализа регрессии в программе Microsoft Excel

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Зарплата сотрудников.

Модель линейной регрессии имеет следующий вид:

У = а0 + а1х1 +…+акхк.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

  1. Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
  2. Надстройки.

  3. Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
  4. Управление.

  5. Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.

Пакет анализа.

После активации надстройка будет доступна на вкладке «Данные».

Анализ данных.

Теперь займемся непосредственно регрессионным анализом.

  1. Открываем меню инструмента «Анализ данных». Выбираем «Регрессия».
  2. Регрессия.

  3. Откроется меню для выбора входных значений и параметров вывода (где отобразить результат). В полях для исходных данных указываем диапазон описываемого параметра (У) и влияющего на него фактора (Х). Остальное можно и не заполнять.
  4. Параметры регрессии.

  5. После нажатия ОК, программа отобразит расчеты на новом листе (можно выбрать интервал для отображения на текущем листе или назначить вывод в новую книгу).

Результат анализа регрессии.

В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Время и стоимость.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» — первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» — второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Функция КОРРЕЛ.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционная матрица.

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:

Объем продаж и цена.

  1. Строим корреляционное поле: «Вставка» — «Диаграмма» — «Точечная диаграмма» (дает сравнивать пары). Диапазон значений – все числовые данные таблицы.
  2. Поле корреляции.

  3. Щелкаем левой кнопкой мыши по любой точке на диаграмме. Потом правой. В открывшемся меню выбираем «Добавить линию тренда».
  4. Добавить линию тренда.

  5. Назначаем параметры для линии. Тип – «Линейная». Внизу – «Показать уравнение на диаграмме».
  6. Линейная линия тренда.

  7. Жмем «Закрыть».

Линейная корреляция.

Теперь стали видны и данные регрессионного анализа.


Множественная линейная регрессия — это метод, который мы можем использовать для понимания взаимосвязи между двумя или более независимыми переменными и переменной отклика .

В этом руководстве объясняется, как выполнить множественную линейную регрессию в Excel.

Примечание. Если у вас есть только одна независимая переменная, вам следует вместо этого выполнить простую линейную регрессию .

Пример: множественная линейная регрессия в Excel

Предположим, мы хотим знать, влияет ли количество часов, потраченных на учебу, и количество сданных подготовительных экзаменов на балл, который студент получает на определенном вступительном экзамене в колледж.

Чтобы исследовать эту взаимосвязь, мы можем выполнить множественную линейную регрессию, используя часы обучения и подготовительные экзамены, взятые в качестве объясняющих переменных, и экзаменационный балл в качестве переменной ответа.

Выполните следующие шаги в Excel, чтобы провести множественную линейную регрессию.

Шаг 1: Введите данные.

Введите следующие данные для количества часов обучения, сданных подготовительных экзаменов и результатов экзаменов, полученных для 20 студентов:

Необработанные данные для множественной линейной регрессии в Excel

Шаг 2: Выполните множественную линейную регрессию.

В верхней ленте Excel перейдите на вкладку « Данные » и нажмите « Анализ данных».Если вы не видите эту опцию, вам необходимо сначала установить бесплатный пакет инструментов анализа .

Опция анализа данных в Excel

Как только вы нажмете « Анализ данных», появится новое окно. Выберите «Регрессия» и нажмите «ОК».

Пример множественной линейной регрессии в Excel

Для Input Y Range заполните массив значений для переменной ответа. Для Input X Range заполните массив значений для двух независимых переменных. Установите флажок рядом с Метки , чтобы Excel знал, что мы включили имена переменных во входные диапазоны. В поле Выходной диапазон выберите ячейку, в которой должны отображаться выходные данные регрессии. Затем нажмите ОК .

Множественная линейная регрессия в Excel

Автоматически появится следующий вывод:

Вывод множественной линейной регрессии в Excel

Шаг 3: Интерпретируйте вывод.

Вот как интерпретировать наиболее релевантные числа в выводе:

R-квадрат: 0,734.Это известно как коэффициент детерминации. Это доля дисперсии переменной отклика, которая может быть объяснена объясняющими переменными. В этом примере 73,4% вариаций в экзаменационных баллах можно объяснить количеством часов обучения и количеством сданных подготовительных экзаменов.

Стандартная ошибка: 5,366.Это среднее расстояние, на которое наблюдаемые значения отходят от линии регрессии. В этом примере наблюдаемые значения отклоняются от линии регрессии в среднем на 5,366 единицы.

Ф: 23,46.Это общая F-статистика для регрессионной модели, рассчитанная как MS регрессии / остаточная MS.

Значение F: 0,0000.Это p-значение, связанное с общей статистикой F. Он говорит нам, является ли регрессионная модель в целом статистически значимой. Другими словами, он говорит нам, имеют ли объединенные две объясняющие переменные статистически значимую связь с переменной отклика. В этом случае p-значение меньше 0,05, что указывает на то, что независимые переменные количество часов обучения и сданных подготовительных экзаменов вместе имеют статистически значимую связь с экзаменационным баллом .

P-значения. Отдельные p-значения говорят нам, является ли каждая независимая переменная статистически значимой. Мы можем видеть, что изученные часы статистически значимы (p = 0,00), в то время как пройденные подготовительные экзамены (p = 0,52) не являются статистически значимыми при α = 0,05. Поскольку сданные подготовительные экзамены не являются статистически значимыми, мы можем принять решение удалить их из модели.

Коэффициенты: коэффициенты для каждой независимой переменной говорят нам о среднем ожидаемом изменении переменной отклика при условии, что другая независимая переменная остается постоянной. Например, ожидается, что за каждый дополнительный час, потраченный на учебу, средний экзаменационный балл увеличится на 5,56 при условии, что количество сданных подготовительных экзаменов останется неизменным.

Вот еще один способ подумать об этом: если учащийся А и учащийся Б сдают одинаковое количество подготовительных экзаменов, но учащийся А учится на один час больше, то ожидается, что учащийся А получит результат на 5,56 балла выше, чем учащийся Б.

Мы интерпретируем коэффициент для перехвата как означающий, что ожидаемая оценка экзамена для студента, который учится ноль часов и сдает нулевые подготовительные экзамены, составляет 67,67 .

Расчетное уравнение регрессии: мы можем использовать коэффициенты из выходных данных модели, чтобы создать следующее расчетное уравнение регрессии:

экзаменационный балл = 67,67 + 5,56*(часы) – 0,60*(подготовительные экзамены)

Мы можем использовать это оценочное уравнение регрессии, чтобы рассчитать ожидаемый балл экзамена для учащегося на основе количества часов, которые он изучает, и количества подготовительных экзаменов, которые он сдает. Например, студент, который занимается три часа и сдает один подготовительный экзамен, должен получить 83,75 балла:

экзаменационный балл = 67,67 + 5,56*(3) – 0,60*(1) = 83,75

Имейте в виду, что, поскольку пройденные подготовительные экзамены не были статистически значимыми (p = 0,52), мы можем решить удалить их, поскольку они не улучшают общую модель. В этом случае мы могли бы выполнить простую линейную регрессию, используя только часы изучения в качестве независимой переменной.

С результатами этого простого линейного регрессионного анализа можно ознакомиться здесь .

Дополнительные ресурсы

После выполнения множественной линейной регрессии есть несколько предположений, которые вы можете проверить, в том числе:

1. Тестирование на мультиколлинеарность с помощью VIF .

2. Тестирование на гетеродескедастичность с помощью теста Бреуша-Пагана .

3. Проверка нормальности с использованием графика QQ .

Регрессионный анализ в Microsoft Excel

Регрессивный анализ в Microsoft Excel

​Смотрите также​ При значении коэффициента​ 75,5%. Это означает,​х​ нескольких независимых переменных.​ D, F.​ получено, что t=169,20903,​ = 11,714* номер​1755 рублей за тонну​+ ε строим систему​ Иными словами можно​ кнопка.​20​ того или иного​ или в отдельной​

​ В нём обязательными​степенная;​

Подключение пакета анализа

​Регрессионный анализ является одним​ 0 линейной зависимости​ что расчетные параметры​к​Ниже на конкретных практических​Отмечают пункт «Новый рабочий​ а p=2,89Е-12, т.​ месяца + 1727,54.​4​

  1. ​ нормальных уравнений (см.​​ утверждать, что на​​Теперь, когда под рукой​

    Переход во вкладку Файл в Microsoft Excel

  2. ​50000 рублей​​ параметра от одной​​ книге, то есть​

    Переход в параметры в программе Microsoft Excel

  3. ​ для заполнения полями​логарифмическая;​​ из самых востребованных​​ между выборками не​

    Переход в надстройки в программе Microsoft Excel

  4. ​ модели на 75,5%​.​ примерах рассмотрим эти​​ лист» и нажимают​​ е. имеем нулевую​​или в алгебраических обозначениях​​3​ ниже)​ значение анализируемого параметра​​ есть все необходимые​​7​

    Перемещение в надстройки в программе Microsoft Excel

  5. ​ либо нескольких независимых​ в новом файле.​ являются​​экспоненциальная;​​ методов статистического исследования.​ существует.​

Активация пакета анализа в программе Microsoft Excel

​ объясняют зависимость между​Где а – коэффициенты​​ два очень популярные​​ «Ok».​ вероятность того, что​​y = 11,714 x​​март​Чтобы понять принцип метода,​​ оказывают влияние и​​ виртуальные инструменты для​

Блок настроек Анализ в программе Microsoft Excel

Виды регрессионного анализа

​5​

  • ​ переменных. В докомпьютерную​
  • ​После того, как все​
  • ​«Входной интервал Y»​
  • ​показательная;​
  • ​ С его помощью​
  • ​Рассмотрим, как с помощью​
  • ​ изучаемыми параметрами. Чем​

​ регрессии, х –​ в среде экономистов​Получают анализ регрессии для​ будет отвергнута верная​

Линейная регрессия в программе Excel

​ + 1727,54​1767 рублей за тонну​ рассмотрим двухфакторный случай.​ другие факторы, не​ осуществления эконометрических расчетов,​15​ эру его применение​ настройки установлены, жмем​и​гиперболическая;​ можно установить степень​ средств Excel найти​ выше коэффициент детерминации,​ влияющие переменные, к​

​ анализа. А также​ данной задачи.​ гипотеза о незначимости​​Чтобы решить, адекватно ли​5​​ Тогда имеем ситуацию,​​ описанные в конкретной​​ можем приступить к​55000 рублей​ было достаточно затруднительно,​ на кнопку​«Входной интервал X»​линейная регрессия.​​ влияния независимых величин​​ коэффициент корреляции.​ тем качественнее модель.​ – число факторов.​​ приведем пример получения​​«Собираем» из округленных данных,​ свободного члена. Для​ полученное уравнения линейной​4​ описываемую формулой​​ модели.​​ решению нашей задачи.​8​

  1. ​ особенно если речь​​«OK»​​. Все остальные настройки​О выполнении последнего вида​​ на зависимую переменную.​​Для нахождения парных коэффициентов​​ Хорошо – выше​​В нашем примере в​

    Переход в анализ данных в программе Microsoft Excel

  2. ​ результатов при их​ представленных выше на​​ коэффициента при неизвестной​​ регрессии, используются коэффициенты​​апрель​​Отсюда получаем:​

    Запуск регрессии в программе Microsoft Excel

  3. ​Следующий коэффициент -0,16285, расположенный​ Для этого:​6​ шла о больших​​.​​ можно оставить по​​ регрессионного анализа в​​ В функционале Microsoft​ применяется функция КОРРЕЛ.​ 0,8. Плохо –​

    ​ качестве У выступает​​ объединении.​​ листе табличного процессора​ t=5,79405, а p=0,001158.​ множественной корреляции (КМК)​1760 рублей за тонну​где σ — это​ в ячейке B18,​щелкаем по кнопке «Анализ​15​ объемах данных. Сегодня,​Результаты регрессионного анализа выводятся​ умолчанию.​ Экселе мы подробнее​ Excel имеются инструменты,​Задача: Определить, есть ли​

    ​ меньше 0,5 (такой​​ показатель уволившихся работников.​​Показывает влияние одних значений​ Excel, уравнение регрессии:​ Иными словами вероятность​ и детерминации, а​6​ дисперсия соответствующего признака,​ показывает весомость влияния​ данных»;​60000 рублей​ узнав как построить​ в виде таблицы​В поле​ поговорим далее.​ предназначенные для проведения​ взаимосвязь между временем​ анализ вряд ли​

    Ввод интервала в настройках регрессии в программе Microsoft Excel

    ​ Влияющий фактор –​ (самостоятельных, независимых) на​СП = 0,103*СОФ +​ того, что будет​ также критерий Фишера​5​ отраженного в индексе.​ переменной Х на​в открывшемся окне нажимаем​Для задачи определения зависимости​ регрессию в Excel,​ в том месте,​«Входной интервал Y»​Внизу, в качестве примера,​ подобного вида анализа.​ работы токарного станка​ можно считать резонным).​ заработная плата (х).​ зависимую переменную. К​ 0,541*VO – 0,031*VK​ отвергнута верная гипотеза​ и критерий Стьюдента.​май​МНК применим к уравнению​ Y. Это значит,​

    Параметры вывода в настройках регрессии в программе Microsoft Excel

    ​ на кнопку «Регрессия»;​ количества уволившихся работников​ можно решать сложные​​ которое указано в​​указываем адрес диапазона​

Запуск регрессивного анализа в программе Microsoft Excel

Разбор результатов анализа

​ представлена таблица, в​ Давайте разберем, что​ и стоимостью его​ В нашем примере​В Excel существуют встроенные​

Результат анализа регрессии в программе Microsoft Excel

​ примеру, как зависит​ +0,405*VD +0,691*VZP –​​ о незначимости коэффициента​​ В таблице «Эксель»​1770 рублей за тонну​ МР в стандартизируемом​ что среднемесячная зарплата​в появившуюся вкладку вводим​ от средней зарплаты​ статистические задачи буквально​ настройках.​

​ ячеек, где расположены​ которой указана среднесуточная​ они собой представляют​​ обслуживания.​​ – «неплохо».​​ функции, с помощью​​ количество экономически активного​ 265,844.​ при неизвестной, равна​ с результатами регрессии​7​ масштабе. В таком​ сотрудников в пределах​ диапазон значений для​ на 6 предприятиях​

​ за пару минут.​​Одним из основных показателей​​ переменные данные, влияние​​ температура воздуха на​​ и как ими​Ставим курсор в любую​Коэффициент 64,1428 показывает, каким​ которых можно рассчитать​ населения от числа​В более привычном математическом​ 0,12%.​ они выступают под​6​

​ случае получаем уравнение:​ рассматриваемой модели влияет​ Y (количество уволившихся​ модель регрессии имеет​ Ниже представлены конкретные​ является​ факторов на которые​ улице, и количество​ пользоваться.​

​ ячейку и нажимаем​

lumpics.ru

Регрессия в Excel: уравнение, примеры. Линейная регрессия

​ будет Y, если​ параметры модели линейной​ предприятий, величины заработной​ виде его можно​Таким образом, можно утверждать,​ названиями множественный R,​июнь​в котором t​ на число уволившихся​ работников) и для​ вид уравнения Y​ примеры из области​R-квадрат​ мы пытаемся установить.​ покупателей магазина за​Скачать последнюю версию​ кнопку fx.​ все переменные в​ регрессии. Но быстрее​ платы и др.​

Виды регрессии

​ записать, как:​ что полученное уравнение​ R-квадрат, F-статистика и​1790 рублей за тонну​y​

  • ​ с весом -0,16285,​
  • ​ X (их зарплаты);​
  • ​ = а​
  • ​ экономики.​
  • ​. В нем указывается​
  • ​ В нашем случае​
  • ​ соответствующий рабочий день.​

Пример 1

​ Excel​В категории «Статистические» выбираем​ рассматриваемой модели будут​ это сделает надстройка​ параметров. Или: как​

​y = 0,103*x1 +​ линейной регрессии адекватно.​ t-статистика соответственно.​8​, t​ т. е. степень​подтверждаем свои действия нажатием​

​0​

​Само это понятие было​

​ качество модели. В​

​ это будут ячейки​

​ Давайте выясним при​

​Но, для того, чтобы​

​ функцию КОРРЕЛ.​

​ равны 0. То​

​ «Пакет анализа».​

​ влияют иностранные инвестиции,​

​ 0,541*x2 – 0,031*x3​

​Множественная регрессия в Excel​

​КМК R дает возможность​

​7​

​x​

​ ее влияния совсем​

​ кнопки «Ok».​

​+ а​

​ введено в математику​

​ нашем случае данный​

​ столбца «Количество покупателей».​

​ помощи регрессионного анализа,​

​ использовать функцию, позволяющую​

​Аргумент «Массив 1» -​

​ есть на значение​

​Активируем мощный аналитический инструмент:​

​ цены на энергоресурсы​

​ +0,405*x4 +0,691*x5 –​

​ выполняется с использованием​

​ оценить тесноту вероятностной​

​июль​

​1, …​

​ небольшая. Знак «-»​

​В результате программа автоматически​

​1​ Фрэнсисом Гальтоном в​ коэффициент равен 0,705​ Адрес можно вписать​ как именно погодные​ провести регрессионный анализ,​ первый диапазон значений​​ анализируемого параметра влияют​​Нажимаем кнопку «Офис» и​​ и др. на​​ 265,844​​ все того же​​ связи между независимой​​1810 рублей за тонну​​t​​ указывает на то,​​ заполнит новый лист​​x​​ 1886 году. Регрессия​ или около 70,5%.​​ вручную с клавиатуры,​​ условия в виде​ прежде всего, нужно​ – время работы​

​ и другие факторы,​ переходим на вкладку​ уровень ВВП.​Данные для АО «MMM»​ инструмента «Анализ данных».​ и зависимой переменными.​

Использование возможностей табличного процессора «Эксель»

​9​xm​ что коэффициент имеет​ табличного процессора данными​1​ бывает:​ Это приемлемый уровень​ а можно, просто​ температуры воздуха могут​

  • ​ активировать Пакет анализа.​ станка: А2:А14.​
  • ​ не описанные в​ «Параметры Excel». «Надстройки».​
  • ​Результат анализа позволяет выделять​ представлены в таблице:​ Рассмотрим конкретную прикладную​
  • ​ Ее высокое значение​8​— стандартизируемые переменные,​ отрицательное значение. Это​

​ анализа регрессии. Обратите​+…+а​линейной;​ качества. Зависимость менее​ выделить требуемый столбец.​ повлиять на посещаемость​

Линейная регрессия в Excel

​ Только тогда необходимые​Аргумент «Массив 2» -​ модели.​Внизу, под выпадающим списком,​ приоритеты. И основываясь​СОФ, USD​ задачу.​

  • ​ свидетельствует о достаточно​август​
  • ​ для которых средние​ очевидно, так как​
  • ​ внимание! В Excel​k​параболической;​ 0,5 является плохой.​ Последний вариант намного​
  • ​ торгового заведения.​ для этой процедуры​

​ второй диапазон значений​Коэффициент -0,16285 показывает весомость​ в поле «Управление»​ на главных факторах,​VO, USD​Руководство компания «NNN» должно​ сильной связи между​1840 рублей за тонну​ значения равны 0;​ всем известно, что​ есть возможность самостоятельно​x​степенной;​Ещё один важный показатель​ проще и удобнее.​Общее уравнение регрессии линейного​ инструменты появятся на​

Анализ результатов регрессии для R-квадрата

​ – стоимость ремонта:​ переменной Х на​ будет надпись «Надстройки​ прогнозировать, планировать развитие​

регрессия в Excel

​VK, USD​ принять решение о​ переменными «Номер месяца»​Для решения этой задачи​ β​ чем больше зарплата​ задать место, которое​k​экспоненциальной;​ расположен в ячейке​В поле​ вида выглядит следующим​ ленте Эксель.​ В2:В14. Жмем ОК.​ Y. То есть​ Excel» (если ее​ приоритетных направлений, принимать​VD, USD​ целесообразности покупки 20​ и «Цена товара​

Анализ коэффициентов

​ в табличном процессоре​i​ на предприятии, тем​ вы предпочитаете для​, где х​гиперболической;​ на пересечении строки​«Входной интервал X»​ образом:​Перемещаемся во вкладку​Чтобы определить тип связи,​ среднемесячная заработная плата​

​ нет, нажмите на​ управленческие решения.​VZP, USD​ % пакета акций​ N в рублях​ «Эксель» требуется задействовать​— стандартизированные коэффициенты​ меньше людей выражают​ этой цели. Например,​i​показательной;​«Y-пересечение»​вводим адрес диапазона​У = а0 +​«Файл»​ нужно посмотреть абсолютное​ в пределах данной​ флажок справа и​Регрессия бывает:​СП, USD​ АО «MMM». Стоимость​ за 1 тонну».​ уже известный по​

Множественная регрессия

​ регрессии, а среднеквадратическое​ желание расторгнуть трудовой​ это может быть​— влияющие переменные,​

​логарифмической.​​и столбца​​ ячеек, где находятся​​ а1х1 +…+акхк​​.​​ число коэффициента (для​​ модели влияет на​ выберите). И кнопка​линейной (у = а​102,5​​ пакета (СП) составляет​​ Однако, характер этой​​ представленному выше примеру​​ отклонение — 1.​​ договор или увольняется.​​ тот же лист,​ a​

Оценка параметров

​Рассмотрим задачу определения зависимости​«Коэффициенты»​ данные того фактора,​. В этой формуле​Переходим в раздел​ каждой сферы деятельности​ количество уволившихся с​​ «Перейти». Жмем.​​ + bx);​​535,5​​ 70 млн американских​​ связи остается неизвестным.​​ инструмент «Анализ данных».​​Обратите внимание, что все​​Под таким термином понимается​ где находятся значения​i​

множественная регрессия

​ количества уволившихся членов​. Тут указывается какое​ влияние которого на​Y​

коэффициент регрессии

​«Параметры»​

уравнение регрессии в Excel

​ есть своя шкала).​ весом -0,16285 (это​Открывается список доступных надстроек.​

​параболической (y = a​45,2​ долларов. Специалистами «NNN»​Квадрат коэффициента детерминации R2(RI)​

линейная регрессия в Excel

​ Далее выбирают раздел​​ β​​ уравнение связи с​​ Y и X,​​— коэффициенты регрессии,​​ коллектива от средней​​ значение будет у​​ переменную мы хотим​означает переменную, влияние​.​Для корреляционного анализа нескольких​​ небольшая степень влияния).​​ Выбираем «Пакет анализа»​ + bx +​41,5​

​ собраны данные об​ представляет собой числовую​​ «Регрессия» и задают​​i​ несколькими независимыми переменными​ или даже новая​ a k —​ зарплаты на 6​ Y, а в​ установить. Как говорилось​ факторов на которую​Открывается окно параметров Excel.​ параметров (более 2)​ Знак «-» указывает​

Задача с использованием уравнения линейной регрессии

​ и нажимаем ОК.​ cx2);​21,55​ аналогичных сделках. Было​ характеристику доли общего​ параметры. Нужно помнить,​в данном случае​ вида:​

​ книга, специально предназначенная​

​ число факторов.​

​ промышленных предприятиях.​

​ нашем случае, это​

​ выше, нам нужно​

​ мы пытаемся изучить.​

​ Переходим в подраздел​

​ удобнее применять «Анализ​

​ на отрицательное влияние:​

​После активации надстройка будет​

​экспоненциальной (y = a​

​64,72​

​ принято решение оценивать​

​ разброса и показывает,​

​ что в поле​

​ заданы, как нормируемые​

​y=f(x​

​ для хранения подобных​

​Для данной задачи Y​

​Задача. На шести предприятиях​

​ количество покупателей, при​

​ установить влияние температуры​

​ В нашем случае,​

​«Надстройки»​

​ данных» (надстройка «Пакет​

​ чем больше зарплата,​

​ доступна на вкладке​

​ * exp(bx));​

​Подставив их в уравнение​

​ стоимость пакета акций​

​ разброс какой части​

​ «Входной интервал Y»​

​ и централизируемые, поэтому​

​1​

​ данных.​

​ — это показатель​

​ проанализировали среднемесячную заработную​

​ всех остальных факторах​

​ на количество покупателей​

​ это количество покупателей.​.​ анализа»). В списке​ тем меньше уволившихся.​ «Данные».​степенной (y = a*x^b);​ регрессии, получают цифру​ по таким параметрам,​ экспериментальных данных, т.е.​ должен вводиться диапазон​ их сравнение между​+x​В Excel данные полученные​ уволившихся сотрудников, а​ плату и количество​ равных нулю. В​ магазина, а поэтому​ Значение​В самой нижней части​ нужно выбрать корреляцию​ Что справедливо.​Теперь займемся непосредственно регрессионным​гиперболической (y = b/x​ в 64,72 млн​ выраженным в миллионах​

​ значений зависимой переменной​ значений для зависимой​ собой считается корректным​2​ в ходе обработки​ влияющий фактор —​ сотрудников, которые уволились​ этой таблице данное​ вводим адрес ячеек​x​ открывшегося окна переставляем​ и обозначить массив.​​ анализом.​ + a);​

​ американских долларов. Это​ американских долларов, как:​ соответствует уравнению линейной​

​ переменной (в данном​

​ и допустимым. Кроме​+…x​

Анализ результатов

​ данных рассматриваемого примера​ зарплата, которую обозначаем​ по собственному желанию.​ значение равно 58,04.​ в столбце «Температура».​– это различные​ переключатель в блоке​ Все.​Корреляционный анализ помогает установить,​Открываем меню инструмента «Анализ​логарифмической (y = b​ значит, что акции​кредиторская задолженность (VK);​

​ регрессии. В рассматриваемой​ случае цены на​ того, принято осуществлять​m​ имеют вид:​ X.​ В табличной форме​Значение на пересечении граф​ Это можно сделать​ факторы, влияющие на​«Управление»​Полученные коэффициенты отобразятся в​ есть ли между​

​ данных». Выбираем «Регрессия».​ * 1n(x) +​ АО «MMM» не​объем годового оборота (VO);​ задаче эта величина​ товар в конкретные​ отсев факторов, отбрасывая​) + ε, где​Прежде всего, следует обратить​Анализу регрессии в Excel​ имеем:​«Переменная X1»​ теми же способами,​ переменную. Параметры​в позицию​

​ корреляционной матрице. Наподобие​ показателями в одной​Откроется меню для выбора​ a);​ стоит приобретать, так​дебиторская задолженность (VD);​

​ равна 84,8%, т.​ месяцы года), а​ те из них,​ y — это​ внимание на значение​ должно предшествовать применение​A​​и​​ что и в​a​«Надстройки Excel»​

​ такой:​ или двух выборках​ входных значений и​показательной (y = a​ как их стоимость​стоимость основных фондов (СОФ).​ е. статистические данные​ в «Входной интервал​ у которых наименьшие​ результативный признак (зависимая​ R-квадрата. Он представляет​ к имеющимся табличным​B​«Коэффициенты»​ поле «Количество покупателей».​являются коэффициентами регрессии.​, если он находится​На практике эти две​

​ связь. Например, между​ параметров вывода (где​ * b^x).​

Задача о целесообразности покупки пакета акций

​ в 70 млн​Кроме того, используется параметр​ с высокой степенью​ X» — для​ значения βi.​ переменная), а x​

​ собой коэффициент детерминации.​ данным встроенных функций.​C​показывает уровень зависимости​С помощью других настроек​ То есть, именно​ в другом положении.​ методики часто применяются​ временем работы станка​ отобразить результат). В​Рассмотрим на примере построение​ американских долларов достаточно​ задолженность предприятия по​ точности описываются полученным​ независимой (номер месяца).​

  • ​Предположим, имеется таблица динамики​
  • ​1​
  • ​ В данном примере​
  • ​ Однако для этих​

​1​ Y от X.​ можно установить метки,​ они определяют значимость​ Жмем на кнопку​

Решение средствами табличного процессора Excel

​ вместе.​ и стоимостью ремонта,​ полях для исходных​ регрессионной модели в​

как построить регрессию в Excel

​ завышена.​

  • ​ зарплате (V3 П)​
  • ​ УР.​
  • ​ Подтверждаем действия нажатием​ цены конкретного товара​, x​ R-квадрат = 0,755​
  • ​ целей лучше воспользоваться​Х​ В нашем случае​ уровень надёжности, константу-ноль,​ того или иного​«Перейти»​Пример:​ ценой техники и​

​ данных указываем диапазон​ Excel и интерпретацию​Как видим, использование табличного​

​ в тысячах американских​F-статистика, называемая также критерием​

регрессия примеры в Excel

Изучение результатов и выводы

​ «Ok». На новом​ N в течение​2​ (75,5%), т. е.​

​ очень полезной надстройкой​Количество уволившихся​ — это уровень​ отобразить график нормальной​

​ фактора. Индекс​.​Строим корреляционное поле: «Вставка»​

​ продолжительностью эксплуатации, ростом​ описываемого параметра (У)​ результатов. Возьмем линейный​ процессора «Эксель» и​

​ долларов.​ Фишера, используется для​

​ листе (если так​

​ последних 8 месяцев.​

​, …x​

​ расчетные параметры модели​

​ «Пакет анализа». Для​

​Зарплата​

​ зависимости количества клиентов​

​ вероятности, и выполнить​

​k​

​Открывается окно доступных надстроек​

​ — «Диаграмма» -​

​ и весом детей​

​ и влияющего на​ тип регрессии.​ уравнения регрессии позволило​Прежде всего, необходимо составить​ оценки значимости линейной​ было указано) получаем​ Необходимо принять решение​m​ объясняют зависимость между​ его активации нужно:​2​

​ магазина от температуры.​ другие действия. Но,​обозначает общее количество​ Эксель. Ставим галочку​ «Точечная диаграмма» (дает​ и т.д.​

​ него фактора (Х).​Задача. На 6 предприятиях​ принять обоснованное решение​ таблицу исходных данных.​ зависимости, опровергая или​ данные для регрессии.​ о целесообразности приобретения​

​— это признаки-факторы​

fb.ru

Корреляционно-регрессионный анализ в Excel: инструкция выполнения

​ рассматриваемыми параметрами на​с вкладки «Файл» перейти​y​ Коэффициент 1,31 считается​ в большинстве случаев,​ этих самых факторов.​ около пункта​

​ сравнивать пары). Диапазон​Если связь имеется, то​ Остальное можно и​ была проанализирована среднемесячная​ относительно целесообразности вполне​ Она имеет следующий​ подтверждая гипотезу о​Строим по ним линейное​

Регрессионный анализ в Excel

​ его партии по​ (независимые переменные).​ 75,5 %. Чем​ в раздел «Параметры»;​30000 рублей​ довольно высоким показателем​ эти настройки изменять​Кликаем по кнопке​«Пакет анализа»​ значений – все​ влечет ли увеличение​ не заполнять.​ заработная плата и​

​ конкретной сделки.​ вид:​ ее существовании.​ уравнение вида y=ax+b,​ цене 1850 руб./т.​Для множественной регрессии (МР)​

​ выше значение коэффициента​

  • ​в открывшемся окне выбрать​3​
  • ​ влияния.​ не нужно. Единственное​«Анализ данных»​
  • ​. Жмем на кнопку​ числовые данные таблицы.​
  • ​ одного параметра повышение​
  • ​После нажатия ОК, программа​ количество уволившихся сотрудников.​
  • ​Теперь вы знаете, что​Далее:​Значение t-статистики (критерий Стьюдента)​
  • ​ где в качестве​A​

​ ее осуществляют, используя​ детерминации, тем выбранная​ строку «Надстройки»;​1​Как видим, с помощью​

​ на что следует​. Она размещена во​ «OK».​Щелкаем левой кнопкой мыши​ (положительная корреляция) либо​ отобразит расчеты на​ Необходимо определить зависимость​

Зарплата сотрудников.

​ такое регрессия. Примеры​вызывают окно «Анализ данных»;​

​ помогает оценивать значимость​​ параметров a и​​B​​ метод наименьших квадратов​​ модель считается более​​щелкнуть по кнопке «Перейти»,​​60​​ программы Microsoft Excel​​ обратить внимание, так​​ вкладке​​Теперь, когда мы перейдем​

​ по любой точке​ уменьшение (отрицательная) другого.​ новом листе (можно​ числа уволившихся сотрудников​

​ в Excel, рассмотренные​выбирают раздел «Регрессия»;​ коэффициента при неизвестной​ b выступают коэффициенты​C​

​ (МНК). Для линейных​ применимой для конкретной​ расположенной внизу, справа​35000 рублей​ довольно просто составить​ это на параметры​«Главная»​

​ во вкладку​

  1. ​ на диаграмме. Потом​ Корреляционный анализ помогает​ выбрать интервал для​Надстройки.
  2. ​ от средней зарплаты.​ выше, помогут вам​в окошко «Входной интервал​ либо свободного члена​ строки с наименованием​1​ уравнений вида Y​ задачи. Считается, что​Управление.
  3. ​ от строки «Управление»;​4​ таблицу регрессионного анализа.​

Пакет анализа.

​ вывода. По умолчанию​в блоке инструментов​«Данные»​

Анализ данных.

​ правой. В открывшемся​ аналитику определиться, можно​

  1. ​ отображения на текущем​Модель линейной регрессии имеет​Регрессия.
  2. ​ в решение практических​ Y» вводят диапазон​ линейной зависимости. Если​ номера месяца и​номер месяца​ = a +​ она корректно описывает​поставить галочку рядом с​2​ Но, работать с​ вывод результатов анализа​Параметры регрессии.
  3. ​«Анализ»​, на ленте в​ меню выбираем «Добавить​ ли по величине​ листе или назначить​ следующий вид:​ задач из области​ значений зависимых переменных​

Результат анализа регрессии.

​ значение t-критерия >​ коэффициенты и строки​название месяца​

​ b​ реальную ситуацию при​ названием «Пакет анализа»​35​ полученными на выходе​ осуществляется на другом​.​ блоке инструментов​ линию тренда».​ одного показателя предсказать​ вывод в новую​У = а​ эконометрики.​ из столбца G;​ t​ «Y-пересечение» из листа​цена товара N​

​1​ значении R-квадрата выше​ и подтвердить свои​40000 рублей​ данными, и понимать​ листе, но переставив​Открывается небольшое окошко. В​«Анализ»​Назначаем параметры для линии.​ возможное значение другого.​

​ книгу).​0​Автор: Наира​щелкают по иконке с​кр​ с результатами регрессионного​2​x​ 0,8. Если R-квадрата​ действия, нажав «Ок».​5​ их суть, сможет​ переключатель, вы можете​ нём выбираем пункт​

​мы увидим новую​

Корреляционный анализ в Excel

​ Тип – «Линейная».​Коэффициент корреляции обозначается r.​В первую очередь обращаем​+ а​Регрессионный и корреляционный анализ​ красной стрелкой справа​, то гипотеза о​ анализа. Таким образом,​1​1​Число 64,1428 показывает, каким​

​Если все сделано правильно,​3​ только подготовленный человек.​ установить вывод в​«Регрессия»​ кнопку –​ Внизу – «Показать​ Варьируется в пределах​ внимание на R-квадрат​1​

​ – статистические методы​ от окна «Входной​ незначимости свободного члена​ линейное уравнение регрессии​январь​+…+b​ будет значение Y,​ в правой части​20​Автор: Максим Тютюшев​

​ указанном диапазоне на​. Жмем на кнопку​«Анализ данных»​

​ уравнение на диаграмме».​ от +1 до​

​ и коэффициенты.​х​ исследования. Это наиболее​ интервал X» и​ линейного уравнения отвергается.​

Время и стоимость.

​ (УР) для задачи​1750 рублей за тонну​m​

  1. ​ если все переменные​ вкладки «Данные», расположенном​
  2. ​45000 рублей​Регрессионный анализ — это​ том же листе,​«OK»​
  3. ​.​Жмем «Закрыть».​ -1. Классификация корреляционных​R-квадрат – коэффициент детерминации.​

Функция КОРРЕЛ.

​1​ распространенные способы показать​ выделяют на листе​В рассматриваемой задаче для​ 3 записывается в​

​3​x​ xi в рассматриваемой​ над рабочим листом​6​ статистический метод исследования,​ где расположена таблица​.​

​Существует несколько видов регрессий:​Теперь стали видны и​ связей для разных​

Корреляционная матрица.

Корреляционно-регрессионный анализ

​ В нашем примере​+…+а​ зависимость какого-либо параметра​

​ диапазон всех значений​

Объем продаж и цена.

  1. ​ свободного члена посредством​ виде:​2​m​ нами модели обнулятся.​ «Эксель», появится нужная​Поле корреляции.
  2. ​4​ позволяющий показать зависимость​ с исходными данными,​Открывается окно настроек регрессии.​параболическая;​ данные регрессионного анализа.​Добавить линию тренда.
  3. ​ сфер будет отличаться.​ – 0,755, или​к​ от одной или​Линейная линия тренда.
  4. ​ из столбцов B,C,​

Линейная корреляция.

​ инструментов «Эксель» было​Цена на товар N​

exceltable.com

​февраль​

Важно понимать, что Excel – это не только программа для создания баз данных, но и профессиональный статистический инструмент. И в статистике есть множество способов обработки числовых значений. Один из них – регрессионный анализ. Он тесно связан с корреляциями. Перед тем, как разобраться в том, как в Эксель осуществлять его на практике, необходимо сперва понять, что же такое регрессионный анализ и чем он отличается от корреляционного.

Термин «корреляция» знаком многим, даже тем, кто не особо хорошо разбирается в статистике. Он уже стал настолько популярным, что нередко его можно услышать в быту. А означает он очень простое явление – взаимосвязь между двумя переменными, когда при изменении одной происходит изменение и другой.

Важно понимать, что корреляция сама по себе устанавливает закономерность, но при этом не указывает на характер этой закономерности. То есть, одна переменная может влиять на другую, а может у них быть какая-то третья переменная, изменение которой влечет изменение обеих сразу. То есть, корреляция дает возможность установить взаимосвязь между явлениями, но не влияние одной на другую.

Линейная регрессия позволяет как раз установить разновидность этой связи, чтобы стало возможным прогнозирование зависимой переменной в зависимости от того, как будет изменяться независимая. А теперь подробнее рассмотрим, как можно почувствовать себя провидцем, не закрывая документа Эксель.

Содержание

  1. Как подключить пакет анализа в программе Excel
  2. Какие бывают виды регрессионного анализа
  3. Линейная регрессия в Excel
  4. Как интерпретировать результаты анализа
  5. Пример регрессионного анализа №1
  6. Пример регрессионного анализа №2

Как подключить пакет анализа в программе Excel

Сразу, с коробки, регрессионный анализ недоступен пользователю. Предварительно его надо включить. Только в этом случае пользователь сможет воспользоваться этими инструментами. Чтобы активировать функцию регрессионного анализа, необходимо выполнить следующие действия:

  1. Открыть меню «Файл». Для этого нужно нажать на одноименную кнопку слева от вкладки «Главная». Регрессионный анализ в Excel. Подробная иллюстрированная инструкция
  2. Далее у нас откроется меню настроек файла. Нас интересует вкладка «Параметры». Регрессионный анализ в Excel. Подробная иллюстрированная инструкция
  3. Теперь у нас появляется возможность настроить параметры Excel. Затем переходим в меню надстроек, выставляем надстройки Excel в перечне, который находится внизу и нажимаем на «Перейти». Регрессионный анализ в Excel. Подробная иллюстрированная инструкция Регрессионный анализ в Excel. Подробная иллюстрированная инструкция
  4. После этого появляется окошко, в котором можно управлять существующими надстройками. Нас интересует опция «Пакет анализа». Нужно поставить галочку возле нее и нажать на «ОК». Регрессионный анализ в Excel. Подробная иллюстрированная инструкция

Теперь у нас на вкладке «Данные» добавился новый блок инструментов, в котором появилась кнопка «Анализ данных».Регрессионный анализ в Excel. Подробная иллюстрированная инструкция

А теперь более подробно опишем, какие виды регрессионного анализа бывают и как его осуществлять в Excel.

Какие бывают виды регрессионного анализа

Выделяют несколько видов регрессий:

  1. Параболическая.
  2. Степенная.
  3. Логарифмическая.
  4. Экспоненциальная.
  5. Показательная.
  6. Гиперболическая.
  7. Линейная регрессия.

Давайте более подробно рассмотрим последнюю разновидность в программе для построения электронных таблиц Excel.

Линейная регрессия в Excel

Давайте приведем небольшой пример. Допустим, у нас есть файл с диапазоном данных, содержащим информацию о том, какая средняя температура воздуха за окном в определенный временной период и сколько было покупателей в этот же день. Для этого нужно использовать регрессионный анализ, разобравшись, каким именно способом климатические условия (то есть, температура воздуха) оказывают влияние на то, как это торговое заведение посещается. Для этого нам нужно составить уравнение регрессии, которое выглядит так: У = а0 + а1х1 +…+акхк. Давайте приведем небольшую расшифровку этих данных.

  1. Y. Обозначает переменную, которая зависима от определенных факторов. Именно ее нам и нужно проанализировать. В нашем примере в качестве такой переменной выступает количество покупателей.
  2. х – это совокупность факторов, которые способны изменить значение переменной. В данном случае ею выступает температура воздуха. Но могут включаться и другие значения, которые могут быть измерены математическими.
  3. а – это коэффициент регрессии. Необходим для того, чтобы формула могла определить не только наличие самого фактора, но и степень его влияния на переменную Y.
  4. k – это общее число всех факторов, которые имеются на текущий момент.

Чтобы осуществить анализ линейной регрессии, необходимо выполнить следующие шаги:

  1. Сделать клик по кнопке «Анализ данных», появившейся после добавления соответствующей надстройки. Она располагается на вкладке «Данные» в группе «Анализ». Регрессионный анализ в Excel. Подробная иллюстрированная инструкция
  2. После этого появится крошечное диалоговое окно. Но несмотря на это, оно содержит достаточное количество информации о том, какие инструменты анализа можно использовать. Нас же интересует регрессия. Соответствующий пункт и нужно выбрать. После того, как он будет выделен, можно нажимать кнопку «ОК». Регрессионный анализ в Excel. Подробная иллюстрированная инструкция
  3. После этого нам нужно настроить регрессию. В соответствующем диалоговом окне необходимо обязательно заполнить входные интервалы X и Y. К оставшимся параметрам, если их не заполнять, будут применены настройки, запрограммированные по умолчанию. В поле с входным интервалом Y записываем тот диапазон, в котором находятся переменные, для которых мы пытаемся установить влияние имеющихся факторов. Простыми словами, общее число покупателей. Есть несколько способов ввода адреса: с клавиатуры или же непосредственное их выделение с помощью мыши. Естественно, проще первый вариант в большинстве случаев, но если человек владеет слепым методом печати и точно помнит адрес диапазона, то вручную ему будет все же проще.

Далее вводим факторы (точнее, содержащие информацию о них ячейки) в поле «Входной интервал X». Как указывалось ранее, перед нами стоит задача понять, как влияет температура воздуха на количество клиентов. Для этого необходимо записать адреса ячеек, входящих в столбик «Температура». Как это сделать? Та точно так же, как и с предыдущим полем: ввести вручную или выделить соответствующий диапазон мышью. Регрессионный анализ в Excel. Подробная иллюстрированная инструкция

Что касается других настроек, то они дают возможность задать метки, уровень надежности показателей, константу-ноль, а также задать ряд других параметров. Но в подавляющем количестве ситуаций нет необходимости корректировать эти настройки. Единственное, что нужно сделать – так это задать правильный переключатель для опции вывода результатов. По стандарту итоги выводятся на другой лист, но пользователь может, если у него будет такое желание, осуществить вывод на тот же лист, что и таблица с первоначальными данными. Также возможен вывод результатов в отдельную книгу. Наконец, после завершения настроек нужно нажать кнопку «ОК», после чего программа все оставшиеся действия выполнит самостоятельно.

Как интерпретировать результаты анализа

Ознакомиться с результатами регрессионного анализа можно в том месте, которое было указано в параметрах. Выглядит он таким приблизительно образом.

Регрессионный анализ в Excel. Подробная иллюстрированная инструкция

Самое главное значение, на которое мы будем ориентироваться – это R-квадрат. В нем записывается качество используемой модели. Чем он выше, тем оно выше. Если оно меньше 0,5, то зависимость считается плохой, если выше – то уже лучше. Чем ближе к 1, тем лучше. Соответственно, максимальный коэффициент – 1.

Также нужно обратить внимание на еще один важный показатель. Его можно найти в ячейке, которая находится на стыке строки Y-пересечение и колонки «Коэффициенты». Здесь можно увидеть значение Y, которое будет равно нулю при определенных условиях. Также можно понять, насколько наша зависимая переменная является зависимой от факторов. Для этого нужно посмотреть, какая цифра стоит на пересечении граф Переменная X1» и «Коэффициенты». Чем коэффициент выше, тем лучше.

Видим, что программа Microsoft Excel открывает широкие возможности для регрессионного анализа. Но конечно, нужна дополнительная подготовка, чтобы читать эти результаты. Но если вы уже разбираетесь в статистике, то будет значительно проще. А теперь давайте приведем некоторые простые примеры, чтобы было более наглядно понятно, как линейная регрессия проводится на практике.

Пример регрессионного анализа №1

А теперь настало время разобрать практические кейсы, как можно использовать линейную регрессию. Допустим, у нас есть набор данных о расходах на ТВ-рекламу, интернет-продвижение и о том, сколько получилось реализовать товара в российской национальной валюте. Все эти данные упакованы в таблицу. Перед нами стоит задача – определить коэффициенты регрессии для независимых переменных (то есть, в нашем случае ими выступают расходы на рекламу по ТВ и в интернете, поскольку оба значения влияют на объем реализуемых товаров). Последовательность действий такая:

  1. Открыть рабочий лист и ввести данные.
  2. Активировать инструмент регрессия способом, описанным выше.
  3. В появившемся диалоговом окне необходимо задать входной интервал X, Y,  задать метки
  4. Также не стоит забывать ввести выходной интервал. Для выполнения этой задачи необходимо также указать такие параметры, как «График нормальной вероятности» и «График остатков».

Видим, что для этого кейса нам не нужно принципиально отходить от схемы, описанной выше. Линейная регрессия в этом случае позволяет уменьшить расходы на рекламу и увеличить отдачу от неё. То есть, выражаясь маркетинговым языком, увеличить ROMI – коэффициент возвратности инвестиций на маркетинг.

Пример регрессионного анализа №2

Второй случай, в котором можно проводить регрессионный анализ – это необходимость найти максимальную модель распределения расходов на разные виды рекламы для того, чтобы получить самую большую прибыль. И такую маркетинговую задачу вполне может решить обычный Excel, кто бы мог подумать?

Предположим, максимальный бюджет на рекламу, который может быть потрачен организацией – 170000 рублей. Это ограничение невозможно предусмотреть стандартным средством, описанным выше. Здесь нужно использовать совсем другую надстройку, которая называется «Поиск решения». Есть ее возможность найти в том же разделе, что и описываемую нами. И аналогично пакету анализа, нам необходимо включить эту надстройку в том же самом меню.

Что же собой являет инструмент «Поиск решения»? Это надстройка, позволяющая найти оптимальный способ решения определенной задачи. Она имеет два основных параметра: целевая функция и ограничения. Таким образом, пользователь может находить оптимальную сумму затрат для рекламу в определенных условиях. Это одно из главных преимуществ данного инструмента.

Точно также, как в случае с пакетом анализа, инструмент поиска решения требует наличия математической модели. В качестве неё и выступает целевая функция. В нашем случае она следующая:  Y= 2102438,6 + 6,4004 X1 — 54,068 X2 > max. В качестве используемых ограничений используется следующее выражение: X1 + X2 <= 170000, X1>= 0, X2 >=0.

После применения инструмента «Поиск решения» оказывается, что при заданных параметрах и ограничениях оптимально тратить деньги на рекламу по телевидению, поскольку это способно обеспечить максимальную прибыль. Как же пользоваться этим инструментом на практике? Для этого нужно выполнить следующие простые действия.

  1. Для начала нажать «Параметры Excel», после чего отправиться в категорию «Надстройки».
  2. После этого в поле «Управление» найти «Надстройки Excel» и кликнуть по «Перейти».
  3. После этого в списке надстроек активировать «Поиск решения».

После нажатия клавиши ОК надстройка успешно активирована. Далее достаточно просто нажимать на соответствующую кнопку на вкладке «Данные» в той же группе, что и пакет анализа и задать подходящие параметры. После этого программа все сделает самостоятельно. Таким образом, использование регрессии в Excel – очень простая штука. Значительно легче, чем может показаться на первый взгляд, поскольку большую часть действий выполняет программа. Достаточно просто вбить правильные настройки, и дальше можно расслабиться. И да, нужно еще интерпретировать результаты правильно. Но это не проблема. Успехов.

Оцените качество статьи. Нам важно ваше мнение:

Like this post? Please share to your friends:
  • Анализ рабочего времени в excel
  • Анализ работы фирмы в excel
  • Анализ работы в ms word
  • Анализ работа с таблицами ms excel
  • Анализ простоев оборудования на производстве в excel